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SUMMARY 

Five programming techniques used to decrease core and increase program 

versatility and efficiency are explained. The techniques are: 

(1) dynamic storage allocation 

(2) automatic core-sizing and core-resizing 

(3) matrix partitioning 

(4) free field alphanumeric reads 

(5) incorporation of a data-complex 

The advantages of these techniques and the basic methods for employing 

them are explained and illustrated. Several actual program applications 

which utilize these techniques are described as examples. 

INTRODUCTION 

The purpose of this paper is to describe some programming techniques 

which are, perhaps, not regularly utilized, with the goal of aiding other 

researchers in program development. Five programming techniques used to 

decrease core and/or increase program versatility and through-put are 

described. The techniques and their primary benefits are: 

1. Dynamic storage allocation - Precise allocation (by input) of core 

requirements for individual jobs; no re-coding required when problem dimensions 

change. 

2. Automatic core-sizing - Computation of core-requirements performed by 

the program during job execution based upon input dimensions. This can be 

done several times during execution, (for example, when a new overlay is called), 

thereby controlling the core allocation more precisely to that which is 

actually required. Reduced costs and more efficient utilization of computer 

resources are achieved. 

3. Matrix partitioning - A means of handling operations involving 

matrices in sections when the matrices are too large to load into core. This 
enables one to analyze large problems and make efficient trade-offs between Ifl 



and core storage requirements. 

4. Free field alphanumeric and integer read combinations - Enables 

the user to read in alphanumeric variables and integer variables using a free 

field format, i.e., unformatted. This is especially helpful for interactive 

terminal use where alphanumeric names are a convenient form of input for the 

user. 

5. Incorporation of a data-complex and a data-complex manager relieves 

the user from much of the drudgery of data management and storage. This 

facilitates the tieing together of programs whose inputs and outputs are 

related. 

The application of these techniques to improve two large aerodynamic pro- 

grams is documented and other sample programs are presented to further show 

the use of these techniques. At this point, the authors wish to acknowledge 

the efforts of Mr. W. M. Adams, Jr. in making all the theoretical changes to 

program SUSSA, the first of the large application programs desribed herein. 

A reason for decreasing core-r,equirements is to increase through-put. Over- 

laying reduces the amount of code required to be in core at any given time, 

partitioning matrices reduces the portion of a matrix required to be in core 

at any given time, and dynamic storage allocation reduces the core required 

in general by eliminating the necessity for maximum fixed dimensions. There 

is a trade-off, of course, because each type of decrease in core requires 

a certain amount of increase in I@ activity. The care required to optimize 

this trade-off is considered in the discussion. The concept of program 

versatility is essentially that a program should be flexible in its ability 

to handle different problem configurations without requiring changes in code. 

Also, inherent in the concept of program versatility is user convenience. 

Changes required by differing problem configurations should be made as often 

as possible by user input during execution, in as convenient a mode as 

possible. 

SECTION I: METHODS FOR REDUCING CORE AND INCREASING PROGRAM VERSATILITY 

The ultimate benefits to be derived from reduced core are faster batch 



turn-a-round time, interactive terminal capability, and reduced cost. Large 

core programs do not lend themselves to interactive use since response time 

is somewhat proportional to core length. In fact, large core programs are 

often not even allowed to execute interactively. Program versatility is not 

only designed for faster turn-a-round time but also for user convenience. Data 

can be input in a more flexible manner and less re-coding is required on the 

user's part when analyzing different problem configurations. The techniques 

discussed in Section I are: 

(1) Dynamic Storage Allocation 

(2) Automatic Core-Sizing and Automatic Core-Resizing in Overlayed 

Programs 

(3) Array Partitioning 

(4) Free Field Alphanumeric Reads 

The techniques employed to reduce core requirements are based on efficient 

use of core and efficient storage of arrays, both in and out of core. By core, 

one means the actual central memory used by an executing program. Although 

code requires a fixed amount of core, determined by the specific code and 

compiler, the core required by code can be reduced significantly by over- 

laying (reference 1). This is a process of dividing the code into pieces 

in such a way that only one piece needs to be in core at a time. The tech- 

niques of core-reduction presented in this section carry this same concept over 

to the storage of arrays. Core requirements can be reduced significantly by 
allocating exactly enough core to store an array and no more. This is dynamic 

storage allocation. There are no fixed dimensions in dynamic storage alloca- 

tion. Core requirements can also be reduced by storing arrays out of core 

(on disc), bringing into core the arrays as needed. Again, only the exact 

amount of core required by the specific array is used. This is possible 

through automatic core sizing (and re-sizing). Automatic core-sizing allows 

the program to automatically size itself during execution as often as is 

feasible. This technique is a definite help in core-reduction, but is also 

designed for user convenience since it allows the program to compute all field 

lengths. Furthermore, core reduction can be accomplished when large arrays 

are involved by partitioning the arrays. Arrays can be partitioned much the 

3 



the same way code can be overlayed, so that not all pieces need to be in core 

at one time. 

Free field alphanumeric reads are simply for user convenience, allowing 

the user a convenient way to read in alphanumeric and/or integer variables 

in an unformatted form. This is especially useful in interactive runs when 

the most convenient response to questions is in alphanumeric form. 

Dynamic Storage Allocation 

Dynamic storage allocation has important user benefits as indicated above. 

Through its implementation, a user can study new problems having vastly 

different array dimensions without penalizing the small array problems by 

using the array dimensions required by the larger array problems. There are 

no fixed dimensions built into the program, so the changes in the sizes of 

the arrays can be done without changing program code and re-compiling. A 

program with dynamic storage allocation can be maintained as a binary program 

and yet can be used to solve problems having different dimensions without any 

excess core. Of course, there are some disadvantages to the programmer. More 

care is required in debugging since arrays can easily over write each other if 

the proper amount of core storage is not allocated. Furthermore, the actual 

address of an array word is harder to ascertain when reading a core dump. 

Once debugged, however, the program is far more convenient for the user. 

The technique of employing dynamic storage allocation relies heavily on 

the knowledge of how arrays are stor*ed in core and the fact that only the 

addresses of variables are passed through argument lists in subroutine calls, 

not the variables themselves. It is this very fact that makes dynamic storage 

possible. The basic idea of dynamic storage allocation, which is extended in 

this paper to overlayed programs and incorporates automatic core-sizing, was 

presented by Charles W. Bolz of Computer Science Corporation in a lecture on 

Optimization Techniques for CDC 6000 Computers prepared January 1973, revised 

October 1974, and sponsored by the LaRC Programmer Support Group. 

Dynamic storage allocation is the allocation of core area to arrays based 

on variable dimensions specified by input. The first word address of each 
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array is determined after the program is executing, based on the input 

dimensions. All arrays required to be in core at any one time are stored in 

blank common. Note here that blank common is used because blank common is 

loaded at the end of program and system code on a CDC system machine. This 

ensures that the size of blank common can be altered without overwriting any 

code by simply changing the field length requested for the job. If blank 

common is not loaded after code, there is an alternative solution which will be 

presented in the discussion. Once the first word addresses are determined, a 

formula for the field length can easily be derived which prescribes the exact 

amount of core length needed to run a particular job. The field length can then 

be calculated based on the exact input dimensions and then specified on the 

JOB control card (see Example 2, page 7). With automatic core-sizing, even 

this becomes unnecessary. Field length is computed and set by the program 

during execution. 

A program utilizing the dynamic storage allocation procedure will now be 

illustrated and contrasted with a standard program which does not employ 

dynamic storage allocation. 

The three examples which follow are three variations of the same sample 

program. This is a simple illustration (using three arrays A, B, and C) which 

multiplies matrix A times matrix B to obtain the product, matrix C. The 

first example is the basic program with maximum fixed dimensions. The second 

is the same program using dynamic storage allocation in blank common, and the 

third has dynamic storage allocation without using any commons. The subroutine 

MULT is not essential in this case, but is included to illustrate the passing 

of arguments which would be required in a more complex program. 

Application of this technique to two large production programs is 

presented on pages 21-30. 
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Example 1: The following sample program multiplies A * B to get C requiring 

arrays A, B, and C to reside in core simultaneously. Maximum 

dimensions are used. 

PROGRAM SAMPLE (INPUT, OUTPUT) 

b DIMENSION A(50,5O),B(50,5O),C(50,50) 

C 

C THIS PROGRAM MULTIPLIES THE MATRICES A AND B TO OBTAIN C 

C C=AxB 

ll 

WC THE MATRIX A IS OF SIZE NR * NC, MAXIMUM DIMENSIONS 50 

*C THE MATRIX B IS OF SIZE NC * NM, MAXIMUM DIMENSIONS 50 

WC THE MATRIX C IS OF SIZE NR * NM, MAXIMUM DIMENSIONS 50 

C 

C READ IN DIMENSIONS Note: The * in the read 

C READ *, NR, NC, NM 

C READ IN MATRICES A AND B 

enables integer and 
floating point in- 
puts of data in 

* READ *, ((A(I,J),I = 1, NR), J=l, NC) unspecified format. 

b READ *r ((B(I,J),I = 1, NC), J=l, NM) 

C 

C PRINT MATRICES A AND B 

DO 200 I = 1, NR 

200 PRINT 205, (A(I,J),J=~,NC) 

DO 220 I = 1, NC 

220 PRINT 205, (B&&J = 1, NM) 

C 

C CALL MULT 
b CALL MULT (50,50,50, NR, NC, NM, A, B, C) 

C 

C PRINT PRODUCT MATRIX C 

DO 230 I = 1, NR 

230 PRINT 205, (c(I,J),J = 1, NM) 

205 FORMAT (8612.3) 

RETURN 

Note: Maximum first 
dimensions must 
be passed to sub- 
routine as well as 
actual dimensions. 
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END 
w SUBROUTINE MULT (MAXA, MAXB, MAXC,NR,NC, NM, A, B, c> 

DIMENSION A(MAXA, l),, B(MAXB, 1), C(MAXC, 1) 

DO 100 J = 1, NM 

DO 100 I = 1, NR 

SUM = 0.0 

DO 150 K = 1, NC 

150 SUM = SUM + A(I,K) * B(K,J) 

100 C(I,J.)=SUM 

RETURN 

END 

Figure 1 depicts the core image of the program above. The arrays A, B, 

and C in the above program require 7500 words (approximately 17000 octal) of 

core. This is a sizable amount of excess core if the program is being executed 

-for a problem where for example', array A is 5*7, B is 7*4, and C is 5*4. 

In this case only 83 words would be required to accommodate the three arrays. 

Now consider the same program using dynamic storage allocation. 

Example 2. The following sample program multiplies A*B to obtain C. 

Dynamic Storage Allocation is employed. 

PROGRAM SAMPLE(INPUT,OUTPUT) 

COMMON X(1) 

READ IN DIMENSIONS 

READ *,NR,NC,NM 

DETERMINE INITIAL WORD INDEXES 

IA=1 

IB = IA + NR*NC 

IC = IB + NC*NM 

FIELD LENGTH FOR PROGRAM IS DEFINED AS 

FL = LWA + NR*NC + NC*NM + NR*NM + lOOB, WHERE LWA = LAST WORD ADDRESS 

OF LOAD 
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LWA = LOCF (X(l)j 

IFL = LWA + IC + NR*NM + l(jOB (Note: 1OOB is simply breathing space 

and is not absolutely necessary) 

PRINT 10, IFL 

10 FORMAT(* FIELD LENGTH NEEDED FOR THIS RUN IS “f?6”B*) 

C 

-C 

b 

L 

C 

C 

C 

C 

WC 

WC 

)C 

C 

C 

m 

t 

C 

200 

220 

C 

C 
w 

C 

C 

PASS INITIAL ADDRESSES TO ARRAYS 

CALL SAMP(X(IA),X(IB),X(IC),NR,NC,NM) 

END 

SUBROUTINE SAMP(A,B,C,NR,NC,NM) 

DIMENSION A(NR,NC).B(NC,NM),C(NR,NM) 

THIS SUBROUTINE MULTIPLIES THE MATRICES A AND B TO OBTAIN C: 

C=A * B 

THE MATRIX A IS OF SIZE NR*NC 

THE MATRIX B IS OF SIZE NC*NM 

THE MATRIX C IS OF SIZE NR*NM 

READ IN MATRICES A AND B 

READ *,A 

READ *,B 

PRINT OUT MATRICES A AND B 

DO 200 I=l,NR 

PRINT 205, (A( I ,J) ,J=l ,NC) 

DO 220 I=l,NC 

PRINT 205,(B(I,J),J=l ,NM) 

CALL MULT 

CALL MULT(A,B,C,NR,NC,NM) (Notice that no maximum dimensions are 

passed to subroutine) 

PRINT PRODUCT 
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DO 230 I=1 ,NR 

230 PRINT 205,(C(I,J),J=l,NM) 

205 FORMAT (8615.4) 

STOP 

END 

SUBROUTINE MULT(A,B,C,NR,NC,NM) 

DIMENSION A(NR,l),B(NC,l),C(NR,l) 

DO 100 J=l, NM 

DO 100 1=1, NR 

SUM = 0.0 

DO 150 K=l, NC 

150 SUM = SUM fA(I,K) * B(K,J) 

100 C(I,J) = SUM 

RETURN 

END 

Notice only one word of core, namely X(l), is reserved permanently to accommo- 

date all three arrays. The LWA = LOCF(X(1)) in the field length formula is the 

amount needed to load program and system routines. LOCF is a system routine 

which locates the address of a particular word. LOCF(x) is the address of the 

variable x in core. In order to determine the amount of field length to 

specify on the JOB control card, this last word address (LWA) can be obtained 

from the load map after loading the program the first time. In this case 

LWA = 17273B, hence 

FL = LWA + NR*NC + NC*NM + NR*NM + ToOB 
= 17273B + (5*7) + (7*4) + (5*4) + looa 
= 17517B 

would be sufficient to load and execute the same problem as in Example 1. 

Compare this to the 35725B field length required in Example 1. There is a 

difference of over 16000B words for the particular problem being run. 

Figure 2 depicts the core-image of the program in Example 2 with dynamic 

storage allocation. 

Figure 3 is a sample run of Examples 1 and 2. Note the input and output 

are the same. The only difference occurs in the field-length required. 
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Of course, the field length for Example 2 could actually be larger 

than 36000B, if the arrays being input had dimensions greater than the 50 used 

in Example 1. If the dimensions were greater than 50, recoding the program 

would be unnecessary for Example 2 because of the dynamic storage allocation 

but would be essential for Example l! 

This next example solves the problem of implementing dynamic storage 

allocation without using blank common. The reason for this example is to 

demonstrate the technique of dynamic storage allocation when blank common 

is not located at the end of code. This same technique can be used with 

secondary overlays in overlayed programs. 

Example 3. The following sample program multiplies A*B to obtain C. Dynamic 

Storage Allocation is employed without using blank common. 

PROGRAM SAMPLE(INPUT, OUTPUT) 

m DIMENSION X(1) 
C 

C READ IN DIMENSIONS 

READ *,NR,NC,NM 

C 

LC DETERMINE ADDRESS OF X( 1) 

IADX=LOCF(X( 1)) 
P 
L 

,C DETERMINE AMOUNT OF TRANSLATION FOR ARRAY INDEXES 
b LWA = 17300B (obtain from load map) 
b ITRANS = LWA - IADX 

C 

C DETERMINE FIRST WORD INDEXES 
b IA=ITRANS + 1 

IB=IA + NR * NC 

IC=IB + NC * NM 
n L 

C FIELD LENGTH FOR PROGRAM IS DEFINED AS 

,C FL = IADX + IC + NR*NM + 1OOB 

L IFL = IADX + IC + NR*NM + 1OOB 
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PRINT 10, IFL 

10 FORMAT(* FIELD LENGTH NEEDED FOR THIS RUN IS *@6*B*) 
C 

C PASS INITIAL ADDRESSES TO ARRAYS A, B, AND C 

CALL SAMP(X(IA),X(IB),X(IC),NR,NC,NM) 
END 

(Subroutines SAMP and MULT are the same as in Example 2.) ,' 

Note that in this example, X(1) is located somewhere within the program 

code. ITRANS = LWA - ADDRESS OF X(1). This simply means that X(ITRANS) is 

located at address LWA. X(1) through X(ITRANS) is equivalent to program and 

system code and the first word after code is X(ITRANS+l). Hence, A(l)=X(ITRANS+l), 

B(l)=X(ITRANS+l+NR*NC), and C(l)=X(ITRANS+l+NR*NC+NC+NM). (See Figure 4) 

In all the illustrations which follow, blank common is used for dynamic 

storage allocation, but the above example illustrates an alternative method 

which is almost as .simple to employ. 

Actual programs which use dynamic storage allocation are discussed in 

this section starting on page 21. 

In summary, Dynamic Storage Allocation is the allocation by the program of 

the work area needed to store all arrays required to be in core at any given 

time based on input dimensions, and the determination of the initial word 

addresses to be passed to each array. 

Automatic Core Sizing 

Next,a procedure for automating the dynamic storage allocation will be 

described. In the utilization of dynamic storage allocation the field length 

associated with a particular problem must be computed by the user and specified 

forthe loader via a control card. Automatic core-sizing eliminates this 

requirement by enabling the program to compute and automatically set its own 

core requirements during execution based on input dimensions. However, auto- 

matic core-sizing can only be incorporated on a system which allows field 
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length to be increased during job execution. Most time-share systems would have 

this capability, including the NOS (time-share) system for CDC computers. 

To accomplish automatic core-sizing, a FORTRAN callable routine is needed 

which changes field length. The following Compass-assembly language routine 

does this. See also Appendix A. 

*** 

* 

* 

* 

* 

* 

* 

RFL 

MEM 

IDENT RFL 

RFL THIS ROUTINE CHANGES THE CURRENT FIELD LENGTH OF JOB 

R.S.CASEY 75/01/12 

*CALL RFL(IFL) 

ARGUMENTS: 

IFL = VALUE OF NEW FIELD LENGTH 

ENTRY RFL 

DATA 0 

SAl Xl 

BX6 Xl 

LX6 30 

SA6 MEM 
MEMORY CM,MEM,R 

EQ RFL 

DATA 0 

END 

The examples which follow illustrate automatic core-sizing in the program 

SAMPLE and core-resizing in an overlayed program. This first example shows 

the changes to.Example 2 needed to incorporate automatic core-sizing. Changes 

are marked by an arrow (h). 

Example 4: The following sample program multiplies A * B to obtain C. Dynamic 

Storage Allocation with automatic core-sizing is used. 

12 



C 

C 

C 

C 

C 

C 

C 

C 

10 

C 

*C 
t 

C 

C 

PROGRAM SAMPLE(INPUT, OUTPUT) 

COMMON X(1) 

READ IN DIMENSIONS 

READ *,NR,NC,NM 

DETERMINE INITIAL INDEXES 

IA=1 

IB=IA + NR*NC 

IC=IB + NC*NM 

DETERMINE LWA OF LOAD = ADDRESS OF X(1) 

LWA = LOCF(X(1)) 

COMPUTE FIELD LENGTH NEEDED 

IFL = LWA + IC + NR*NM + 1OOB 

PRINT 10,IFL 

FORMAT (* FIELD LENGTH NEEDED FOR THIS RUN IS *fl6*B*) 

SET FIELD LENGTH 

CALL RFL( IFL) 

PASS INITIAL ADDRESSES TO ARRAYS A, B, AND C. 

CALL SAMP(X(IA),X(IB),X(IC),NR,NC,NM) 
END 

(Subroutines SAMP and MULT are the same as in Example 2.) 

Note that the only difference between Example 2 and 4 is the automatic 

setting of the field length by a call to RFL inside the program. This sub- 

routine eliminates the necessity to put a field length on the JOB control card 

large enough to execute the program. Field length is set during execution. 

Earlier, we mentioned that overlaying the code of a program was an 

effective way to obtain significant decreases in core requirements. The idea 
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of course is to partition the code into smaller 'sub' programs, each of which 

is called by a 'main' program called,the zero overlay. Only one 'sub' program 

is loaded into core at a time. Two actual examples of %his are discussed later, 

but let it suffice for the moment that a program which is several hundred K 

in size can be effectively reduced to 'sub' programs, called primary overlays, 

which are often well under 1OOK in size. (See pages 21 - 30) 

In an overlayed program, dynamic storage allocation and automatic core- 

sizing become a bit more complicated by the fact that the LWA of the load 

changes with respect to each overlay loaded. Furthermore, dynamically stored 

arrays needed by two or more overlays must be stored out of core between 

overlay calls. Without automatic core-sizing, the field length for an overlayed 

program must remain fixed at that required for the largest overlay executed in 

a given run, but automatic core-sizing allows each overlay to set its own core 

requirements. Example 5 is a simple example of dynamic storage allocation with 

automatic core-sizing in an overlayed program. 

In Example 5, there are two primary overlays. Array C is transferred from 

overlay 1 to overlay 2 via a sequential file which is used to store array C 

while overlay 2 is being loaded. In most large overlay programs, however, 

random access files should be used instead in order to reduce the number of 

rewinds and skips required to access different arrays. Another alternative- is 

to use a data-complex as discussed in Section II. 

Notice in this example, that to ensure enough core to load an overlay, 

a call to RFL is made prior to each overlay call. In this example, assume the 
LWA of overlay 1 is 50000B and the LWA of overlay 2 is 65000B. A call for 
50000B and 65000B words of core, therefore, are,requested prior to calling 

overlays 1 and 2, respectively. 

Example 5. The following illustrates the coding necessary for an overlayed 

program with dynamic storage allocation and automatic core-sizing. 

OVERLAY(SAMPLE,O,O) 

PROGRAM MAIN(INPUT,OUTPUT,TAPE2) 

COMMON /AAA/ NR,NC,NM,NL 
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C READ IN DIMENSIONS 

READ *,NR,NC,NM,NL 

C 

,C SET FIELD LENGTH TO LOAD FIRST OVERLAY 

CALL RFL(50000B) 

L 

C LOAD FIRST OVERLAY AND EXECUTE 

CALL OVERLAY(6LSAMPLE,l,O) 

C 

WC SET FIELD LENGTH TO LOAD SECOND OVERLAY 

CALL RFL(65000B) 

L 

WC LOAD SECOND OVERLAY AND EXECUTE 

CALL OVERLAY(GLSAMPLE,2,0) 

STOP 

END 

OVERLAY(SAMPLE,l,) 

PROGRAM ONE 

COMMON /AAA/ NR,NC,NM,NL 

COMMON X(1) 

C 

C DETERMINE INITIAL INDEXES 

IA = 1 

IB = IA + NR*NC 
-1C = IB tr NC*NM 

L 

-C DETERMINE FIELD LENGTH TO ACCOMMODATE ARRAYS FOR OVERLAY 1 

IFL = LOCF(X(l)) + IC + NR*NM + 1OOB 

C 

@C SET FIELD LENGTH FOR OVERLAY 1 

CALL RFL(IFL) 

C PASS ADDRESSES TO ARRAYS USED IN OVERLAY 1 

CALL SAMP(X(IA),X(IB),X(IC),NR,NC,NM) 
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CC 

m 

C 

C 

C 

LC 

C 

C 

C 

-'c 

C 

mC 

END 

SUBROUTINE SAMP(A,B,C,NR,NC,NM) 
. 

' COMPUTE ARRAY C 
. 

STORE ARRAY C ON TAPE 2 

REWIND 2 

WRITE(2) C 

END 

OVERLAY(SAMPLE,2,0) 

PROGRAM TWO 

COMMON /AAA/ NR,NC,NM,NL 

COMMON X(1) 

SET UP INITIAL INDEXES 

IC = 1 

ID = IC + NR*NM 

IE = ID + NM*NL 

DETERMINE FIELD LENGTH TO ACCOMMODATE ARRAYS FOR OVERLAY 2 

IFL = LOCF(X(l)) + IE + NM*NM*NL + 1OOB 

SET UP F.L. FOR OVERLAY 2 

CALL RFL (IFL) 

PASS ADDRESSES TO ARRAYS USED IN OVERLAY 2 

CALL SUB(X(IC),X(ID),X(IE),NR,NM,NL) 

END 

SUBROUTINE SUB(C,D,E,NR,NM,NL) 

DIMENSION C(NR,NM),D(NM,NL),E(NM,NM,NL) 

ACCESS C ARRAY FROM TAPE 2 

REWIND 2 
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. 

* COMPUTE D AND E ARRAYS, ETC. 

END 

Figure 5 depicts the core image of the main overlay and the two primary 

overlays of the preceeding sample program. Notice that the two primary over- 

lays are depicted adjacent to one another since they actually replace each other 

in core, each one starting at precisely the same address. 

Note here that if secondary overlays ('sub'programs to the primary 

overlays) are used, the array storage should be allocated in the last level 

overlay loaded; or a method similar to that used in Example 3 .(dynamic 

storage without / /-common) of determining a translation of addresses could 

be employed. 

No matter what the program structure is, there is usually some method to 

employ dynamic storage and automatic core-sizing. The above examples have 

been given to suggest methods available. The primary advantages to be gained 

are increased versatility of the program for the user and efficient utiliza- 

tion of core. It is the final step in variable dimensioning. 

Partitioning Techniques 

Scientific applications programs often involve computations using arrays 

of data sufficiently large to make the program too large to be loaded into 

central memory. For instance, only one array dimensioned in a program at 

400*400 = 160K decimal = 470K octal would make the program impossible to load 

on the present system at NASA/Langley. The natural thing to do is to partition 

or "block" the matrix, in a manner similar to overlaying code, storing all 

blocks outside core, reading into core only one or two blocks at a time. 

Furthermore, the code for performing computations involving the matrix must be 

"partitioned" in such a way as to perform the computations per block. 

A blocking technique will now be described which was applied to the 

problem of solving a large system of 1 inear equations with complex coeffic 

having dimensions of 100 or more. The basic method for solving the system 

ients 
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A*X = B was Gaussian Elimination; i.e., triangularizing the augmented matrix 

[A:B] and back substituting. The complex coefficient matrix A was stored 

out of core in blocks or partitions of 16 rows each. For instance, if A were 

a 46*46 array, and since 46=2*16 + 14, A would be partitioned into 3 blocks. 

The first two blocks would contain 16 rows each and the third would contain 

14 rows. Specificially, 

Block 1 would contain rows 1 to 16 of matrix A 

Block 2 would contain rows 17 to 32 of matrix A, and 

Block 3 would contain rows 33 to 46 of matrix A. 

Accessing words from a two dimensional array is somewhat faster if the 

first dimension is a power of 2. The reason 24 = 16 was chosen was that, for 

the cost formula presently employed at NASA/Langley, 16 was the best trade- 

off value between data-transfer cost and field length cost. Appendix B 

contains a listing of this matrix-equation solver using partitioned matrices. 

There are several alternatives for writing and reading blocks in and out 

of core; namely, sequential files using BUFFER IN and BUFFER OUT, binary reads 

and writes, or random access (word addressible) files using READMS and WRITMS. 

Random access files using direct calls to the system Record Manager could also 

be employed. Binary reads and writes would definitely be the method to 

employ if system independence were desired. In the blocked routine described 

here, a random access file using READMS and WRITMS was employed because it is 

faster when accessing arrays in a non-sequential manner and it is easy to 

debug. It eliminated the necessity for rewinding and skipping records in order 

to store and access blocks during the computations, making the programming 

much simpler. 

The blocked solver routine is not recolended for small matrices since 

computation time is much faster if the entire matrix remains in core. How- 

ever, in the programs for which this subroutine was written, the size of the 

matrix was on the order of 100 or more. If stored in core, this complex array 

dimensioned lOO*lOO would require at least 47K octal words of core. The core 

used to store the two blocks of A required to be in core simultaneously 

would be 16*100*2 (complex)*2(blocks) = 6400 = 15K octal (approximately), 



resulting in a savings of about 32K octal words of core with a minimal amount 

of IB requests since A would only be partitioned into 6 blocks. 

The blocked-equation solver routine listed in Appendix B has proven to be 

a very useful routine, relatively inexpensive, time and cost wise, enabling 

drastic reductions in field length. It can be used in any program when 

employed according to the documentation in the listing. 

In writing the code to correspond to blocking, the easiest technique is 

to write the code with the idea in mind that a block consists of one row and 

then modifying the code to consist of blocks containing more than one row. 

As indicated above, blocking techniques can result in a large amount of core 

savings with 10 trade-off cost a minimum. Essential to blocking, however, 

is the ability to perform computations using algorithms which lend themselves 

to blocking techniques, i.e., algorithms which can be performed on matrices 

per row. 

Free Field Alphanumeric Reads 

Free field reads by a program are convenient for a user in both batch 

and interactive terminal jobs. It is particularly useful in the interactive 

mode since formats are extremely difficult to adhere to when input columns 

are not numbered. Available, via the FTN compiler is the ability to read, 

free field, floating point or integer numbers (using the * in place of the 

format number), but not alphanumeric words. The utility routines C@NVERT 

and SHIFT, 1 

alphanumeric 

alphanumeric 

(unspecified 

sted in Appendix C, were written in order to allow free field 

and integer combination reads. They enable the user to read in 

and/or integer variables in combination using a free field 

format. This is especially helpful where alphanumeric names 

are a convenient form of input for the user. 

Subroutine CONVERT, starting in a specified column of a card image and 

ending at the first succeeding column which contains a blank or a comma, 

converts those columns into an alphanumeric word or integer word, depending.on 

the type desired. CALL CONVERT(A,O) will convert columns to alphanumeric 

code without blank fill and store in location (word) A. CALL CONVERT(I,l) 
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Will Convert columns to integer value and store in location (Word)I. CALL 

-CONVERT(A,E) will convert columns to alphanumeric code with zero fill and store 

in location A. Subroutine SHIFT, called by subroutine CONVERT, performs the 

binary bit shifts necessary to convert the integer words. 

The labeled common: 

COMMON/CARD/ISTART,CARD(80) 

must appear in the calling program. 

C 

2 

100 

C 

C 

C 

C 

C 

C 

C 

C 

C 

3 
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The essentials for using CONVERT are demonstrated in the following code: 

PROGRAM 

COMMON/CARD/ISTART,CARD(80) 

DIMENSIONS A(lOl), Il(lOO), 12(100) 

I=1 

END = 3HEND 

READ IN ENTIRE CARD IMAGE 

READ 100, CARD 

FORMAT(80Al) 

START IN FIRST COLUMN 

ISTART = 1 

CONVERT FIRST NON-BLANK COLUMNS TO ALPHANUMERIC WORD 

CALL CONVERT(A(I),O) 

IF(A(I).EQ.END)GO TO 3 

CONVERT NEXT NON-BLANK COLUMNS TO AN INTEGER 11 

CALL CONVERT (Il(I),l) 

CONVERT NEXT NON-BLANK COLUMNS TO AN INTEGER 12 

CALL CONVERT (12(1),1) 

I=I+l 

GO TO 2 

CONTINUE 



The above code reads in card images until a card with the word END on it 

is reached. The columns on this card are then converted to three words each, 

one alphanumeric and two integer. For example, if the following input data 

were used for the above code, namely, 

GN 1 4 

BASKET 2,3 

END 

then, A(1) = GN , 11(l) = 1 ) 12(l) = 4, 

A(2) = BASKET , Il(2) = 2 12(2) = 3, and 

A(3) = END . 

Subroutine CONVERT requires that the column numbered ISTART contain a 

non-blank character. This routine is not completely generalized, but it has 

proven to be an extremely useful routine for interactive work. It will both 

blank-fill or zero-fill an alphanumeric word, depending upon the code number 

chosen. See Appendix C. 

Applications 

The above techniques - dynamic storage allocation, automatic core-sizing, 

and matrix partitioning - along with overlaying were applied to two moderately 

large programs. The modifications and their results are described herein. 

The first application is to computer program SUSSA which determines unsteady 

aerodynamic forces using methods developed by Morino as described in Reference 2. 

The second application is computer program DLAT which determines unsteady 

aerodynamic forces using the doublet lattice approach of Giesing, Kallrnan, and 

Rodden, as described in Reference 3. 

Application 1: SUSSA 

The first example, SUSSA (Steady and Unsteady Subsonic and Supersonic 

Aerodynamics) is a program for calculating unsteady and aerodynamics using 

methods developed for NASA by Dr. Luigi Morino of Boston University under 

Grant NGR-22-030-004 to Boston University. The version of SUSSA received by 

Langley was written to test out theoretical developments; development of an 

efficient, versatile code was not an objective of the grant. Consequently, the 
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complexity of the aerodynamic configurations that could be studied was severely 

limited. (A maximum of 100 boxes were available for paneling of all surfaces, 

and aerodynamic force matrix elements could be computed for a maximum of nine 

modeshape pairs.) Furthermore, to avoid the requirement of prohibitive amounts 

of storage with the original non-overlayed code , undesirable, repetitive compu- 

tations had to be performed for each new modeshape and reduced frequency. Major 

programming modifications have been made to the program. The program code was 

completely restructured using one main program and five primary overlays, each 

of which performs a basically independent function and is self-contained 

except for data-transfer to and from other overlays. Limitations on the number 

of boxes for aerodynamic paneling have been effectively removed. The frequency 

independent computations have been removed from the frequency loop, and portions 

of the mode independent computations have been removed from the modeshape loop. 

These efficiency and versatility improvements have been accomplished by means 

of the following modifications. 

Modifications to Program SUSSA: 

1. Restructuring the program into overlays that perform computations which are 

independent of frequency and those which are dependent on frequency, and 

computing the AA matrix relating velocity potential to downwash and solving 

the related equation for all modes of like symmetry simultaneously. 

2. Incorporating dynamic storage allocation and automatic core-sizing in order 

to remove fixed dimensions. 

3. Incorporating blocking techniques in computations involving large matrices 

and the inclusion of the blocked Gaussian Elimination routine for solving 

a system of linear equations having complex coefficients. The restructuring 

of SUSSA resulted in a program having five (5) primary overlays: 

Overlay (1,O) 

Initializes data, reads in data, and determines geometry. Stores 

data on random access file. 

Overlay (2,0) 

Computes the coefficient matrices which are frequency independent 

and stores them on random access file. 
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Overlay (3,0) 

Computes (mode dependent) downwash coefficients for all modes 

and stores coefficients on random access file. 

Overlay (4,0) 

Constructs and solves frequency and mode dependent system of 

equations using blocked solver routine. 

Overlay (5,0) 

Computes generalized aerodynamic forces. 

Overlays (l,O), (2,0), and (3,0) are frequency independent. 

Figure 6 is a flow diagram of the modified program SUSSA. Note that the 

zero overlay simply controls the program flow. 

Figure 7 depicts the core image of the original version of SUSSA, and 

Figure 8 depicts the core image of the modified version. The re-arrangement of 

subroutines for the modified version is indicated at the bottom of Figure 8. 

Notice that for the sample run, the core length is less than half that 

required for the original program. Furthermore, the most expensive overlay 

time-wise, overlay (2,0), is more than 1OOK smaller. Note here that when the 

two versions were executed for the same problem, it was found that in the 

original version of SUSSA, the time and cost were slightly less for one 

frequency than in the modified version. But also in the original version, the 

time and cost for each additional frequency were the same as for the first one. 

In the modified version, however, with frequency independent computations 

removed, the computations for each additional frequency required approximately 

l/5 the time that the first frequency required for the the test cases examined. 

As a consequence, the modified version cost increasingly less than the original 

as the number of frequencies was increased. 

Another benefit of the modified version, since dynamic storage is used, is 

that there are no built-in limitations on the dimensions of any problem. 

The following is a listing of excerpts from actual code in overlay (1,0) 

of SUSSA which does the dynamic storage allocation and automatic core-sizing. 

Notice that core length is reset three times in the same overlay. The second 

time because array dimensions following execution of subroutine DATA depend 
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on the value of NELEM which is computed in subroutine DATA. The third time 

core is reset because some arrays needed by subroutine PREPRP) are no longer 

needed for the rest of the overlay, but other arrays are needed. 

2 

3 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

OVERLAY (SUSSA,l,O) 

PROGRAM INITIAL 

COMMON/ZZZ99/KPRINT(lO),NREAD,NWRITE 

COMPLEX FREQ 

COMMON/RTAPE/ITAPE,INDXR(l) (Dimensioned larger in (0,O)) 

COMMON X(1) 

COMMON /PARAM/ NMODE,NEREQ,NMODEP,NELEM,NNODE,NXYMP,NTWAKE,NESQ 

C 

DATA KOUNT,O,' 

NXMAX,NYMAX,FREQ(20) 

READ(NREAD,2)KREAD,NMODE,NFREQ,KGUST,NXMAX,NYMAX 

WRITE(NWRITE,2)KREAD,NMODE,NFREQ,KGUST,NXMAX,NYMAX 

NMODEP = NMODE + KGUST 

NXP = NXMAX + 1 

NYP = NYMAX + 1 

NXYMP = NXP*NYP 

FORMAT(1015) 

FORMAT(lOF8.3) 

INFORMATION FOR DYNAMIC STORAGE OVERLAY (1,O) 

ARRAY NAME DIMENSIONS 

MSYMY 

MSYMZ 

MODE 

MODTYP 

NOFCT 

Pl 

P2 

P3 

KPP 

NMODEP 

NMODEP 

NMODEP 

NMODEP 

NXYMP*NS 

3*NELEM 

3*NELEM 

3*NELEM 

NXMAX 
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C KMP KXMAX C 
C NODE 4*NELEM C 
C XK 3*NNODE C 
C KWAKE NELEM C 
C PC 3*NELEM C 
C WA 6*NYP+2*NXP C 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

C 

WC COMPUTE INITIAL WORD INDEXES FOR ARRAYS USED BY SUB. DATA 

IMY = 1 

IMZ = IMY+NMODEP 

IMD = IMZ+NMODEP 

IMODT = IMD+NMODEP 

INOFCT = IMODT+NMODEP 

C 

PC 

m 

C 

SET FIELD LENGTH FOR SUBROUTINE DATA 

IFL=LOCF(X(l))+INOFCT+lOOB 

CALL RFL(IFL) 

CALL DATA(X(IMY),Y(IMZ),X(IMD),X(IMODT),NMODEP,NELEM) 

CALL SECOND(CPTIME) 

CALL DISPLA(llH DATA TIME=,CPTIME) 

NNS = NS 

COMPUTE INITIAL WORD INDEXES FOR ARRAYS USED IN SUB. PREPRB 

IPl = INOFCT + NXYMP*NS 

IP2 = IPl + 3*NELEM 

IP3 = IP2 + 3*NELEM 

IKPP = IP3 + 3*NELEM 

IKMP = IKPP + NXMAX 

SET FIELD LENGTH FOR SUBROUTINE PREPRQl 

IFL= IKMP + NXMAX + IFL 

CALL RFL(IFL) 

CALL PREPR~(NNODE,NXYMP,X(INOFCT),NELEM,NTWAKE,X(~KPP),X(IKMP), 

C NXMAX,NNS) 
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CALL SECOND(CPTIME) 

CALL DISPLA(llH PREP TIME=,CPTIME) 

NRECA = NELEM/16.01 + 1 

N= KRECA + 10 

IF(KOUNT.EQ.O)CALL OPENMS(ITAPE,INDXR,N+l,O) 

CALL WRITMS(ITAPE,X(IMY),4*NMODEP,NRECA+8,-1,0) 

KOUNT = KOUNT + 1 

C 

t C COMPUTE INITIAL WORD INDEXES FOR ARRAYS USED IN SUB. ONEEXT 

INODE =. IP3 + 3*NELEM 

IXK = INODE + 4*NELEM 

IKW = IXK + 3*NNODE 

IPC = IKW + NELEM 

IWA = IPC + 3*NELEM 

) C SET FIELD LENGTH FOR SUBROUTINE ONEEXT 

* IFL = IWA + 6*NYP + 2*NXP + LOCF(X(l)) 
w CALL RFL( I FL) 

WRITE(6,lOO) IFL 

100 FORMAT(*FIELD LENGTH - OVERLAY (1,O) - INITIAL IS *66) 

CALL ONEEXT(X(INODE),X(IXK),X(IKW),X(IPC),X(INOFCT),X(IPl),X(IP2) 

C,X(IP3),NELEM,NNODE,NXYMP,NS,X(IWA),NYP,NXP) 

END 

SUBROUTINE DATA(MSYMY,MSYMZ,MODE,MODTYP,NMODP,NELE) 

DIMENSION MSYMY(NMODP),MSYMZ(NMODP),MODE(NMODP),MODTYP(NMODP) 

. NELE DEFINED 

END 

SUBROUTINE PREPR~(NNODE,NXYMP,NOFCT,NELEM,NTWAKE,KPP,~P,NXMX,NNS) 

DIMENSION NOFCT(NXYMP,NNS),KPP(NXMX),KMP(NXMX) 

. 

. CODE 
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END 

SUBROUTINE ONEEXT(MODE,XK,KWAKE,PC,NOFCT,Pl,P2,P3,NELEM,NNODE, 

C NXYMP,NNS,WA,NYP,NXP) 

DIMENSION NODE(4,NELEM),XK(3,NNODE),KWAKE(NELEM),PC(3,NELEM) 

C ,NOFCT(NXYMP,NNS),P1(3,NELEM),P2(3,NELEM),P3(3,NELEM) 

C M(1) 

COMMON /RTAPE/ ITAPE,NRECA 

WC COMPUTE INITIAL WORD INDEXES FOR ARRAYS USED ONLY IN COODPT. 

WC SPACE RESERVED IN LAST CALL TO RFL. 

IW2 = 1 + NYP 

IW3 = IW2 + NYP 

IW4 = IW3 + NYP 

IW5 = IW4 + NYP 

IW6 = IW5 + NXP 

IW7 = IW6 + NYP 

IW8 = IW7 + NYP 

ll 

CALL COODPT(NELEM,NXYMP,NOFCT,XK,NNODE,NNS,WA(l),WA(IW2),WA(IW3) 

C ,WA(IW4),WA(IW5),WA(IWG),NYP,NXP,WA(IW7),WA(IW8)) 

. 

. 

C WRITE ARRAYS NODE AND XK ONTO ITAPE 

CALL WRITMS(ITAPE,NODE,4*NELEM+3*NNODE,NRECA+l,-1,O) 

C 

C WRITE ARRAY KWAKE ONTO ITAPE 

CALL WRITMS(ITAPE,KWAKE,NELEM,NRECA+2,-1,O) 

C WRITE ARRAYS NOFCT,Pl,P2,P3 ONTO ITAPE 

CALL WRITMS(ITAPE,NOFCT,NXYMP*NS+9*NELEM,NRECA+4,-1,0) 

RETURN 

END 

SUBROUTINE COODPT(NELEM,NXYMP,NOFCT,XK,NNODE,NNS,HCHORD,HAXIS 
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C ,VCHORD,VAXIS,HCSI,HETA,HYP,NXP,DCHORD,CHAXIS) 

DIMENSION XK(3,NNODE),NOFCT(NXYMP,NNS),HCHORD(NYP),HAX~S(NYP) 

C ,VCHDRD(NYP),VAXIS(NYP),HSCI(NXP),HETA(NYP),DCHORD(NYP) 

C ,CHAXIS(NXP) 

. CODE 

. 

END 

Notice in subroutine ONEEXT additional initial word indexes are computed 

for subroutine COODPT. The field length did not need to be reset since the 

space for the arrays was reserved when computing the field length for the 

previous call to RFL. The reason for computing the indexes in ONEEXT was to 

avoid passing those addresses through the argument list of subroutine ONEEXT. 

The fewer number of argument lists for which an address needs to be passed 

through, the less code required to pass the address. 

Application 2: DLAT 

A second program application of'the techniques described herein is DLAT, 

a streamlined computer program for calculating unsteady aerodynamic forces using 

the doublet lattice approach described in Reference 3. The program was over- 

layed and used random access files for data storage. Hence, significantly large 

core reductions due to overlaying and combining files, as in SUSSA, could not be 

realized. However, the program would not run on NOS because certain assembly 

language routines were not compatible; hence, revisions were first made to make 

the program compatible with NOS. Then, the program , when run on NOS, was approxi- 

mately seven (7) times more costly than previous costs on ICOPS. The reason 

for this was attributed to the excessive number of Iv requests for data transfer 

and charges for IP, activity under the NOS system. Furthermore, the program had 

built-in maximum fixed dimensions. In order to reduce cost and increase program 

versatility, the following modifications were made, bringing the cost down 

significantly (approximately to what it had been on NOS) and reducing the time 

and core slightly. 
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Modifications to DLAT: .--_ 

1. Reduction of data transfer activity by incorporation of the blocked 

solver routine described earlier for solving a system of linear equa- 

tions with complex coefficients, replacing the routine used in the 

streamlined version. 

2. Removal of an unneeded disc file and buffer. 

3. Incorporation of dynamic storage allocation and automatic core-sizing, 

removing maximum fixed dimensions. 

4. Incorporation of a Data-Complex for storing data. A Data-Complex (or 

Data Bank) is a large external file used to store data arrays, by array 

name, from programs which supply data for one another. This will be 

discussed in detail in the next section. 

Figure 9 depicts the core image of the streamlined ICOPS version of the 

Doublet Lattice program and Figure 10 depicts the core image of the modified 

NOS version with dynamic storage allocation, automatic core-sizing, blocking, 

and data-complex. The trade-off between 10 cost and core cost indicated that 

it would be profitable to reduce 10 somewhat at the expense of increasing core, 

causing the NOS-AMSOL overlay to be much larger than would be required if mini- 

mum block sizes were employed. Here, the array block sizes were increased 

until an optimum cost trade-off was effected. 

The blocked-solver routine using Gaussian elimination in DLAT is similar 

to that used in SUSSA except that the coefficient matrix is stored on a data- 

complex to avoid unnecessary recomputations. A complete description of a data- 

complex is given in Section II. 

One should note here that the ICOPS version required a maximum fixed core 

length for all overlays based on the size of overlay (5,O) and resulting in 

much wasted core. The modified NOS version, with automatic core-sizing, resets 

the field length for each overlay. This produces significant cost reduction 

since the most expensive overlay time-wise, overlay (2,0), requires much less 

core than overlay (5,0). Hence, by using dynamic storage allocation, automatic 

core-sizing and blocking, cost was effectively reduced on an already streamlined 

version of a program. The NOS cost function included costs for 10 activity 

not previously charged for under KRONOS and ICOPS in addition to costs for time 
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and field length. Even so, it was possible to develop a much more versatile 

NOS version which is not appreciably more expensive to run than the original 

streamlined ICOPS version. 

SECTION II: DATA MANAGEMENT 

When the communication of data among computer programs is required, data- 

management is a very important consideration. When using many sequential files 

for this communication, the probability of error in data-management is quite 

high. This can result from the many JCL commands (REWIND, COPY, SKIPR, etc.) 

necessary to position files for the next program. The retention of data for 

future use usually requires the saving and keeping track of a large number of 

files. The construction of a data-complex (one random access file) as described 

herein, relieves the user of much of the drudgery of data-management. As 

illustrated in Figure 11, the communication of data among programs is direct 

and facilitates the tieing together of programs whose inputs and outputs are 

related. 

The data-complex coupled with a data-complex manager make sequentia'l execu- 

tion of jobs with linked input and output a much easier task. As will be 

described below, the data can be stored on the data-complex in a form that can 

be readily identified and accessed by the user. The data-complex manager, 

which will also be described subsequently, can perform such tasks as cataloging 

and storing of data on the data-complex, accepting data of arbitrary but known 

format and filing, punching, etc., in arbitrary but known format for use by 

other programs. Another important user advantage resulting from the use of 

the data-complex is that manipulation of data files can be accomplished by 

means of data inputs rather than by using large control decks. This should be 

particularly attractive to the typical user who is not fully familiar with many 

of the control card commands. All of these features allow the user to access, 

manipulate, and store data much more easily and with fewer mistakes. 

Data-Complex Description 

Sequential files are often employed in data storage and transfer. 
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Accessing a piece of data is similar to accessing a piece of information from 

a file cabinet in which there are no labels. One simply needs to know the folder 

number it is in. Then counting from the beginning, he must skip through the 

folders until the desired one is reached. If there are only a few folders, this 

is not hard. However, in large programs, with many arrays of data, searching 

sequentially through files of data can be tedious at best. Often hard-to-detect 

errors are incurred resulting from obtaining an incorrect record off the file. 

A data-complex is analogous to a file cabinet in which the drawers are 

numbered and the folders are labeled. To access a piece of information that has 

been filed in a "labeled" file cabinet, one simply needs to know a label and 

drawer number. A data-complex contains "data sets" which, like each drawer in 

a file cabinet, contains slots labeled by array "codenames". Accessing an array 

of data, the user simply needs to know the dataset number and codename the array 

is stored under. 'The use of a data-complex is as simple as using a "labeled" 

file cabinet to store every array of data used by several programs. Its 

advantages are analogous to the 

"unlabeled" one. 

advantages of a "labeled" file over those of an 

In the discussion which fo 

presented. The objective is to 

llows, a simplified system of programs is 

show the basic differences between programs 

which use traditional methods of data-transfer and one that uses a data-complex. 

The programs are presented in juxtaposition, and the differences are pointed out 

by arrows. 

Consider two programs, PRE and POST. Suppose program PRE required arrays 

AA, BB, and CC to be input and generates arrays DD and EE to be used in program 

POST. The two examples which follow are composed of two parts each: A - the 

code for the program samples, and B - the control and data decks for executing 

a sample job. The first example is one which uses sequential files for data 

storage and transfer. The second uses a data-complex. All programs incor- 

porate dynamic storage allocation, although dynamic storage is not required in 

order to create and use a data-complex. It is assumed at this point that the 

input arrays for program PRE (and program PREDC) have been previously put on 

the proper input file. Note here also that the EE array generated by program 

PRE (PREDC) is different in that it is a multiple-record array; only one 
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record of which is in core at a time. The changes to programs PRE and POST 

are marked by an arrow 0) on the left. 

Example 1. Programs PRE and POST using 

sequential files for data 

storage and transfer. 

Part 1A: Code for program PRE 
PROGRAM PRE(INPUT=1O1,OUTPUT=lOl) 

c C ,TAPE1=514,TAPE2=514) 

DIMENSIONS FREQ(lO) 

COMMON X(1) 

COMMON/IDENT/HDR(8) 

NAMELIST/PREINP/NM,NBC,NFR,SCALAR,FREQ. 

WC REWIND OUTPUT FILE 

. REWIND 2 

PRINT 5 

5 FORMAT(////,*EXAMPLE 1 -- PRE*) 

CC BEGINNING OF MAIN LOOP 

99 CONTINUE 

WC REWIND ARRAY-INPUT FILE 

c REWINO 1 

C READ IN HEADER IDENTIFICATION 

READ 10,HDR 

10 FORMAT (8~10) 

PRINT 10,HDR 

C READ IN DIMENSIONS OF ARRAYS 

READ PREINP 

C SET UP INITlAL WORD INDEXES 

IAA=l 

IDs=IAA+NM*NM 

ICC=IBB+NM*NBC 

IDD=ICC+NBC*NM 

IEE=IDD+NM*NM 

C SET UP FIELD LENGTH 

IFL=LOCF(X(l))+IEE+NM*NM+lOOB 

CALL RFL(IFL) 

C PASS ADDRESSES TO ARRAYS 

CALL PREEXD(X(IAA),NM,X(I8B),X(ICC),NBc 

C ,X(IDO),X(IEE),NFR,FREQ) 

32 

Example 2. Programs PREDC and POSTDC 

using a data-complex for 

data storage and transfer. 

Part 2A: Code for program PREDC 

PROGRAM PREDC(INPUT=lOl,OUTPUT=lOl) 

DIMENSION FREQ(lO) 

COMMON X(1) 

COMMON IDENT/HDR/(8) 

NAMELIST/PREINP/NM,NBC,NFR,SCALAR,FREQ. 

CC OPEN DATA-COMPLEX FILE 

t CALL OPENDC(7LDCSAMPL) 

PRINT 5 

5 FORMAT(////,*EXAMPLE 2 -- PREDC*) 

C BEGINNING OF MAIN LOOP 

99 CONTINUE 

C READ IN HEADER IDENTIFICATION 

READ 10,HDR 

10 FOR~T(BA~O) 

PRINT 10,HDR 

C READ IN DIMENSIONS OF ARRAYS 

READ PREINP 

*C READ IN DATA-COMPLEX PARAMETERS 
c CALL READDCM(0) 

C SET UP INITIAL WORD INDEXES 

IAA=l 

IBB=IAA+NM*NM 

ICC=IBB+NM*NBC 

IDD=ICC+NBC*NM 

IEE=IDD+NM*NM 

C SET UP FIELD LENGTH 

IFL=LOCF(X(l))*IEE+NM*NM+lOOB 

CALL RFL(IFL) 

C PASS ADDRESSES TO ARRAYS 

CALL PREEXD(X(IAA),NM,X(IBB),X(ICC.),NBC 

C ,X(IDD),X(IEE),NFR,FREQ) 



C CONTINUE? 

READ *,ISTOP 

IF(ISTOP.EQ.O)GO TO 99 

c STOP 

END 

SUBROUTINE PREEXD(AA,NM,PB,CC,NBC,DD,EE 

C ,NFR,FREQ) 

DIMENSIONS AA(NM,NM)&B(NM,NBC),CC(NBC,NM) 

C ,DD(NM,NM),EE(NM,NM),FREQ(NFR) 

,C READ IN ARRAYS FROM TAPE1 

. READ(~)AA 

. READ(l)BB 

. READ(l)CC 

c COMPUTE DD ARRAY 

C DD=AA*AA+BB*CC*SCALAR 

CALL MULT(AA.AA,DD,NM,NM,NM) 

CALL MULT(BB,CC,AA,NM,NBC,NM) 

DO 100 J=l,NM 

DO 100 J=l,NM 

100 DD(I,J)=DD(I.J)+AA(I.J)*SCALAR 

-c STORE DD ARRAY ON TAPE2 
* WRITE(2)DD 

C COMPUTE (MULTIPLE-RECORD) EE ARRAY 

C EE=(AA*AA+DD)*AA*FREQ(I) 

DO 200 IF=l,NFR 

CALL MULT(AA,AA,BB,NM,NM,NM) 

CALL ADD(EE,DD,DD,NM,NM) 

CALL MULT(DD,AA,EE,NM,NM,NM) 

DO 300 I=l,NM 

DO 300 I=l.NM 

300 EE(I,J)=FREQ(IF)*EE(I,J) 

C STORE RECORD NUMBER IF OF EE ARRAY 

WC ONTO TAPE2 
* WRITE(2)EE 

200 CONTINUE 

RETURN 

END 

C CONTINUE? 

READ*,ISTOP 

IF(ISTOP.EQ.O)GO TO 99 

DC PRINT OUT TABLE OF CONTENTS 

c CALL TOC(0) 
c CALL STOPP(0) 

END 

SUBROUTINE' PREEXD(AA,NM,BB,CC,NBC,DD,EE 

C ,NFR,FREQ) 

DIMENSIONS AA(NM,NM),BB(NM,NBC),CC(NBC,NM) 

C ,DD(NM,NM),EE(NM,NM),FREQ(NFR) 

CC READ IN ARRAYS FROM DATA-COMPLEX 
c CALL READIN(AA,NM*NM,l,l) 
. CALL READIN(BB,NBC*NM,2,1) 
c CALL READIN(CC,NBC"NM,3,1) 

C COMPUTE DD ARRAY 

C DD=AA*AA+BB*CC*SCALAR 

CALL MULT(AA.AA,DD,NM,NM,NM) 

CALL MULT(BB,CC,AA,NM,NBC,NM) 

DO 100 J=l.NM 

DO 100 J=l.NM 

100 D( I ,J)=DD( I ,J)+AA( I ,J)*SCALAR 

*C. STORE DD ARRAY ON DATA-COMPLEX 
c CALL STORE(DD,NM*NM.4.1.1) 

c. COMPUTE (MULTIPLE-RECORD) EE ARRAY 

C EE=(AA*AA+DD)*AA*FREQ(I) 

DO 200 IF=1 ,NFR 

CALL MULT(AA,AA,EE,NM,NM,NM) 

CALL ADD(EE,DD,DD,NM,NM) 

CALL MULT(DD,AA,EE,NM,NM,NM) 

DO 300 J=l,NM 

DO 300 J=l,NM 

300 EE( I ,J)=FREQ(IF)*EE( 1,J) 

C STORE RECORD NUMBER IF OF EE ARRAY 
4 ONTO DATA-COMPLEX 
c CALL STORE(EE,NM*NM,5,NFR,IF) 

200 CONTINUE 

RETURN 

END 
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Program POST 
PROGRAM POST(INPUT=1O1,OUTPUT=lOl) 

. C ,TAPE2=514) 

COMMON X(1) 

COMMON /IDENT/HDR(8) 

NAMELIST/POSTINP/NM,IOPT,NFR 

4 REWIND ARRAY-INPUT FILE 

c REWIND 2 

PRINT 5 

5 FORMAT(////*EXAMPLE 1 -- POST) 

C BEGINNING OF MAIN LOOP 

99 CONTINUE 

C READ IN HEADER-IDENTIFICATION 

READ 10,HDR 

10 FORMAT(8Alo) 

C READ IN DIMENSIONS AND ANALYSIS OPTION 

READ POSTNP 

C SET UP INITIAL WORD INOEXES 

IDD=l 

IEE=IDD+NM*NM 

IWK=IEE+NM*NM 

C SET UP FIELD LENGTH 

IFL=L~~F(~(~))+IwK+NM*NM+~~oB 

CALL RFL(IFL) 

C PASS ADDRESSES TO ARRAYS 

CALL POSTEXD(X(IDD),X(IEE,X(IWK),NM 

C ,IOPT,NFR) 

C CONTINUE? 

READ *,ISTOP 

IF(ISTOP.EQ.O)GO TO 99 

Program POSTDC 
PROGRAM POSTDC(INPUT=lOl ,OUTPUT=lOl) 

COMMON X(1) 

COMMON /IDENT/HDR(8) 

NAMELIST/POSTINP/NM.IOPT,NFR 

WC OPEN DATA-COMPLEX 

c CALL OPENDC(7LDCSAMPL) 

PRINT 5 

5 FORMAT(////*EXAMPLE 2 -- POSTDC) 

C BEGINNING OF MAIN LOOP 

99 CONTINUE 

C READ IN HEADER-IDENTIFICATION 

READ 10,HDR 

10 FORMAT(8Alo) 

C READ IN DIMENSIONS AND ANALYSIS OPTION 

READ POSTNP 

e READ IN DATA-COMPLEX PARAMETERS 
c CALL READDCM(0) 

C SET UP INITIAL WORD INDEXES 

IDD=l 

IEE=IDD+NM*NM 

IWK=IEE+NM*NM 

C SET UP FIELD LENGTH 

IFL=LOCF(X(~ ))+IwK+NM*NM+~~~B 

CALL RFL(IFL) 

C PASS ADDRESS TO ARRAYS 

CALL POSTEXD(X(IDD),X(IEE,X(IWK),NM 

C ,IOPT,NFR) 

C CONTINUE? 

READ *,ISTOP 

IF(ISTOP.EQ.O)GO TO 99 

CC PRINT OUT TABLE OF CONTENTS 
c CALL TOC(D) 

c CALL STOPP(0) 

EN0 

c STOP 

END 
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SUBROUTINE POSTEXD(DD,EE,WK,NM,IOPT,NFR) SUBROUTINE POSTEXD(DD,EE,WK,NM,IOPT,NFR) 
DIMENSION DD(NM,NM),EE(NM,NM),WK(l) DIMENSION DD(NM,NM),EE(NM,NM),WK(l) 

C READ IN ARRAYS AND PERFORM ANALYSIS OPTION C READ IN ARRAYS AND PERFORM ANALYSIS OPTION 
* READ(P)DD c CALL READIN(DD,NM*NM,4,1) 

DO 200 I=l,NFR DO 200 I=l,NFR 
* READ(E)EE c CALL READIN(EE,NM*NM,5,1) 

PRINT 20 IOPT PRINT 20 IOPT 
20 FORMAT(/*OPTION *13* PERFORMED*) FORMAT(/*OPTION *13* PERFORMED*) 

200 CONTINUE 200 CONTINUE 
RETURN RETURN 
END END 

Also, the following BLOCK DATA must be inserted into each and every 

program which will communicate with the data-complex. Following the analogy of 

the file cabinet, this block data indicates how many drawers are in the cabinet, 

how many folders are in each drawer, and what the labels are on each folder.. 

Basically, it defines the unique aspects of a particular data-complex. 

The numbers chosen as normal were arbitrarily picked because they worked 

for the data-complexes set up for most of the programs that use a data-complex. 

Any number can be used instead. 

BLOCK DATA DATACOM 

C NOTE: 

C 

C 

C 

C 

C 

C 

C 

C 

C 

THIS BLOCK DATA INFORMS THE DATA-COMPLEX UTILITY 

ROUTINES OF THE TOTAL NUMBER OF DATASETS POSSIBLE 

AND THE TOTAL NUMBER OF DIFFERENT ARRAYS TO BE ALLOWED 

ON THE DATA-COMPLEX CURRENTLY BEING USED, AS WELL AS 

THE NAMES AND DESCRIPTIONS OF EACH ARRAY. ONCE A 

DATA-COMPLEX HAS BEEN CREATED, THE NUMERICAL PARAMETERS MUST 

NOT BE ALTERED IN ANY OF THE PROGRAMS USING THE GIVEN 

DATA-COMPLEX. HOWEVER, THE CODENAMES AND DESCRIPTIONS CAN BE 

ALTERED OR ADDED TO AT ANY TIME, PROVIDED THEY ARE CHANGED 

IN ALL THE PROGRAMS UTILIZING THAT DATA-COMPLEX. 

C bEFINITION OF PARAMETERS AND NAMES TO BE ESTABLISHED BY 

C THIS BLOCK DATA ROUTINE. 

C NDSETP TOTAL NUMBER 0~ DATASETS POSSIBLE. (NORMAL IS 10) 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

NARRAYS 

NIND 

NAMEC 

NAMES 

ISETR 

NWORDS 

NRECDS 

NREC 

NIND3 

DIMENSION OF ARRAY "INDEX" = NDSETP+2. 

THE TOTAL NUMBER OF DIFFERENT ARRAYS 

POSSIBLE. (NORMAL IS 15). 

TOTAL NUMBER OF WORDS IN ARRAYS "INDEX2" = ll*NARRAYS+l 

(NORMAL IS 166).DIMENSIONAL OF "INDEX2" = NIND. 

ARRAY OF CDDE NAMES USED TO ACCESS AND STORE ARRAYS 

ON THE DATA-COMPLEX. EACH ARRAY ON THE COMPLEX HAS 

ITS OWN UNIOUE CODENAME ASSIGNED IN THIS BLOCK DATA 

BY THE USER. 

DIMENSION OF "NAMEC" = NARRAYS 

ARRAY OF GENERAL 2-WORD DESCRIPTIONS OF EACH ARRAY ON 

DATA-COMPLEX, EACH NAMEC(1) MUST CORRESPOND TO 

NAMES(l,I) AND NAMES(2,I). DIMENSION OF "NAMES" = 

(2,NARRAYS). 

ARRAY OF READ PARAMETERS DESCRIBED IN READDCM. 

DIMENSION OF "ISETR" = NARRAYS. 

NUMBER OF WORDS IN EACH RECORD OF EACH ARRAY ON 

DATA-COMPLEX. DIMENSION OF "NWORDS" = NARRAYS. 

NUMBER OF RECORDS WHICH COMPRISE EACH ARRAY ON 

DATA-COMPLEX. DIMENSION OF "NRECDS" = NARRAYS. 

MAXIMUM NUMBER OF RECORDS POSSIBLE IN ANY MULTIPLE- 

RECORD ARRAY. (NORMAL Is 50) 

DIMENSIONS OF INDEX3, USED BY MULTIPLE-RECORD 

ARRAYS. NiND3=NREC+l. 

COMMON/RINDX/NDSETS,NDSETN,NDSETP,ICSET,DATCOM,INDEX(l2) 

COMMON/SUBINDX/NARRAYS,NIND,NINDA,IOP,IMN;I~DEX2(l66) 

COMMON/RNAMEC/NAMEC(l5) 

COMMON/RNAMES/NAMES(2,15) 

COMMON/SETRD/ISETR(l5) 

COMMON/SETSV/ISETSV(l5) 

COMMON/NWORDS/NWORDS(l5) 

COMMON/NRECDS/NRECDS(15) 

COMMON/SUB3/NREC,NIND3,INDEX3(51) 

REAL NAMEC,NAMES 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

DATA NDSETP/l O/ ,NARRAYS/15/ ,NIND/166/ ,NREC/50/ ,NIND3/51/ 

DATA NAMEC/lOHAA 

,lOHBB 

,lOHCC 

,lOHDD 

,lOHEE 

,lOHFF 

,lOHGG 

/ 

DATA NAMES/lOHSAMPLE AA ,lOH 

,lOHSAMPLE BB ,lOH 

,lOHSAMPLE CC ,lOH 

,lOHAA*AA+BB*C,lOHC*SCALAR 

,lOHAA*AA+DD)*,lOHAA*FREQ(I) 

,lOHFREQ(I)*(D,lOHD+EE(I)) 

,lOHFF*FF ,lOH 

/ 

END 

Part 1B: Control and data decks for PRE and POST. 

Suppose two different sets of AA, BB, and CC arrays have been saved on files 

ABC1 and ABC2. These arrays are to be used to generate six (6) different DD 

and EE arrays, depending upon three different scalars. Each set of DD and EE 

arrays is saved on a different file so it can be accessed individually without 

having to skip records in order to position the file to locate the desired set 

of data. The control deck and data deck comprising JOB1 will accomplish this. 

Now suppose option 7, using the DD and EE arrays put on file DDEE12, and option 

4, using the DD and EE arrays put on file DDEE23, are to be studied. The con- 

trol and data decks comprising JOB2 will accomplish this. 

Part 2B: Control and data decks for PREDC and POSTDC to execute same jobs 

as in Part 1B. 

The control deck and data decks comprising JOB3 and JOB4 will perform the same 

computations on the same problem configuration as set up in Example lB, using 

programs PREDC and POSTDC and storing all arrays on the data-complex, DCSAMPL. 
. 
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PART 1B: 
JOBl... 

USER,... 

CHARGE.... 

GET,PREBN. 

GET,TAPEl=ABCl. 

PREBN. 

SAVE.TAPEZ=DDEEll. 

PREBN. 

SAVE,TAPE2=DDEE12. 

PREBN. 

SAVE,TAPEZ=DDEE13. 

GET,TAPEl=ABC2. 

PREBN. 

SAVE,TAPE2=DDEEZl. 

PREBN. 

SAVE,TAPE2=DDEE22. 

PREBN. 

SAVE,TA?E2=DDEE23. 

/EOR 

ABC1 -- DOEE 1 -- SCALAR*.07 

$PREINP NM=50, NBC=75. SCALAR=.07, 

NFR=4. FREQ=.1,.2..3..4$ 

1 

JEOR 

ABC1 -- DDEE 2 -- SCALAR=1.2 

$PREINP NM=50, NBC=759 SCALAR=1.2. NFR=4. 

FREQ=.1,.2..3,.4$ 

/EOR 

ABC1 -- DDEE 3 -- SCALAR=1.7 

$PREINP NM-50, NBC=75. SCALAR=1.7.NFR4, 

FREQ=.1,.2,.2..4$ 

/EOR 

ABC2 -- DDEE 4 -- SCALAR=.07 

$PREINP NM=45. NBC=609 SCALAR=.07,NFR=Z, 

FREQ=.l..Z$ 

/EOR 

ABC2 -- DDEE 5 -- SCALAR=1.2 

SPREINP NM=45, NBC=60. SCALAR=1.2.NFR=E, 

FREQ=1,.2$ 

/EOR 

ABC2 -- DDEE 6 -- SCALAR=l.? 

PREINP NM=459 NBC=6D. SCALAR=1.7,NFR=2, 

FREQ=.l,.Z$ 

/EOF . 

Control 
Deck 
JOB1 

Data 
Deck 
JOB1 

PART 2B: 

JOBJ,... 

USER,... 

CHARGE,... 

GET.PREDCBN. 

GET,DCSAMPL. 

PREDCBN. 

REPLACE,DCSAMPL. 

/EOR 

ABC1 -- DDE 1 -- SCALAR=.07 

$PREINP NM350, NBC=75, SCALAR=.D7,NFR-4 

FREQ=.1..2,.3,.4$ 

ALL 1 0 

DD 0 1 

EE 0 1 

EN0 

0 

ABC1 -- DDEE 2 -- SCALAR=l.Z 

$ PREINP SCALAR=l.Z$ 

DD 0 2 

EE 0 2 

END 

0 

ABC1 -- DDEE 3 -- SCAL4R=l.7 

$PREINP SCALAR=1.7$ 

DO 0 3 

EE 0 3 

END 

0 

ABC2 -- DDEE 4 -- SCALAR=.07 

SPREINP NM=45, NBC=CO, SCALAR=.07,NFR=LS 

ALL 2 0 

DD 0 4 

EE 0 4 

END 

0 

ABC2 -- DDEE 5 -- SCALAR=1.2 

$PREINP SCALAR=1.25 

DD 0 5 

EE 0 5 

END 

0 

ABC2 -- DDEE 6 -- SCALAR=1 

BPREINP SCALAR=1.7$ 

OD 0 6 

EE 0 6 

END 

1 

/EOF 

.7 

Control 
Deck 
JOB3 

Data 
Deck 
JOB3 
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JOBZ.... 

USER,... 

CHARGE,... 

GET .POSTBN. 

GET,TAPE2=DDEE12. 

POSTBN . 

GET,TAPE2=ODEE23. 

POSTBN . 

/EOR 

ABC1 -- DDEE 2 -- SCALAR 1.2 

SPOSTINP NM=50, lOPT=7,NFR=4$ 

1 

/EOR 

ABC2 -- DDEE 6 -- SCALAR 1.7 

SPOSTINP NM=45 ,l OPT=4 .NFR=2$ 

1 

/EOF 

JOB4.... 

USER,... 

Control 
Deck 
JOB 2 

Data 

CHARGE,... 

GET ,POSTDCB. 

GETJICSANPL. 

POSTDCB. 

/EOR 

ABC1 -- ODEE 2 -- SCALAR 1 .L.OPTION 7 

SPOSTINP NM=50. 1 OPT=7 .NFR=4$ 

ALL 2 0 

END 

Deck 
JOB 4 

0 

ABC2 -- DDEE 6 -- SCALAR 1.7.0PTION 4 

$POSTINP NM=45,10PT=4,NFR=2$ 

ALL 6 0 

END 

1 

/EOF 

Control 
Deck 
JOB 4 

Data 
Deck 
JOB 2 

The following Table of Contents is dutput by both programs PREDC and 

POSTDC by using a CALL TOC(0) command in the program. 
TARLE OF CONTENTS FOR DATA-COMPCEK FILE DCSRMI’C”’ 

DATASET 1 

ARRAY ARRAY 
NO. NAME 

CODE 
NAME 

DATE TIME NO. NO. 
CREATED CREATED WORDS RECORDS 

UESCRlrTlDN 

--------‘-‘----"-------------------------------------------------------------------~---------------------.---- 
1 SAMI'I. E AA AA 77/09/19. 14.48.38. 2500 I AA ARRAY FROM AOCI. ---NM=5D,NBC=75 

2 SAMrLE I30 I38 77/09/19. 14.49.01. 3750 1 00 ARRAY L-ROM ADCl. ---NM=5O,NBC=75 

3 SAMPLE CC CC 77/09/19. 14.49.25. 3750 1 CC ARRAY FROM ABCl, ---NM=50;NOC=75 

rl AAhAAt6B+CC*SCALAR 00 77/09/30. 13.03.42. 2500 1 ABC1 --- DDEE I --- SCALAR =.07 

5 (LWCC)**3tBD*CC”oD EE 77/09/3o. 13.03.59. 2500 4 ADCI --- DDEE I --- SCALAR =.07 

DATASET 2 

ARRAY ARRAY CODE DATE TIME NO. NO. DESCRlrTlON 

‘-‘O:___-__!“‘l’li_____-________’_’”rF__---_”’14~IfO___C”E”I’D_____“O~----------__________-_________-_-____ 
I SAlwlE AA AA 77/W/19. 14.52.10. 2025 1 AA ARRAY FROM AOCZ. ---NM=45,NBC=60 

2 SAMPLE UD DO 77/09/19. 14.52.48. 2700 1 BO ARRAY FROM ABCZ. ---NM=45,NDC=60 

3 SAMPLE CC cc 77/09/19. 14.53.07. 2700 1 CC ARRAY FROM ABCZ, ---NM~45,NBC=60 

4 AA*AAtOD*CC*SCALAR 00 77/09/3o. 13.04.05. 2500 1 ABC1 --- DDEE 2 --- SCALAR -182 

5 (BDfCC)**3tDBCCCfOD EE 77/09/30. 13.04.08. 2500 4 ABC1 --- DDEE 2 --- SCALAR =1.2 

DATASET 3 

ARRAY ARRAY CODE DATE TIME NO. NO. 
No 

‘DESCRIPTION 

-_1__-_-“““~______-_------~~~~------~~~~~~~---~~~~~~~-----~~~~---~~~~~~~------------------------------------- 
4 AA*AAt30+CC*SCALAR 00 77/09/3o. 13.04.14. 2500 1 ABC2 --- DDEE 4 --- SCALAR =1.7 

5 (DO*CC)**3tBB+CC*DD EE 77/09/30. 13.06.21. 2025 2 AOC2 --- DDEE 4 --- SCALAR -1.7 
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DATASET 4 

nRRnY ARRAY CODE DATE TIME 
No. NAME NAME CREA’IED CREATED bd%S RE%DS DESCRIPTlON 
--______------_--------------------------------------------------------------------------------------------- 
4 M*AA+BB*cC+SCALAR DO 77/09/30. 13.05.44. 2025 I IILICZ --- WEE 4 --- SCALAR =.07 
5 (OD*CC)**3+0B*CC+DD EE 77/09/30. 13.06.21. 2025 2 ADCZ --- DOEE.4 --- SCALAR =.07 

DATESET 5 

ARRAY ARRAY CODE DATE TIME 

rsl------n~~--------------~~~~------~~~~~~~---~~~~~~~-----~~~---~~~~~----------------------~~~~~~~~~~~- 

4 M*AA+BD*CC*SCALAR 00 77/09/30. 13.06.26. 2025 I necz --- ODEE 5 --- scnLnR -1.2 
5 (BB*CC)**3~8B*CC*DD EE 77/09/30. 13.06.25. 2025 2 ABC2 --- DDEE 5 --- SCALAR -1.2 

DATASET 6 

ARRAY ARRAY CODE DATE TIME 

“O:------r”TE--------------~~~~------~~~~~~~---~~~~~~~-----~~~~---~~~~~----------------------~~~~~~~~~~~- 
4 AA*AA+BO*CC*SCALAR 00 77/09/30. 13.06.27 2025 1 ABC2 --- DDEE 6 --- SCALAR =1.7 

5 (BO’CC)**3+BBCCCfDD EE 77/09/30. 13.06.28 2025 2 AOC2 --- ODEE 6 --- SCALAR =1.7 

To the reader, the above sample jobs probably seem to be about the same 

amount of work, with possibly the second example using the data-complex appear- 

ing to be a little more. Keep in mind, however, the advantages gained so far 

with the data-complex; namely, 

(1) the smaller number of files to be maintained, 

(.2) the fact that data management and manipulation is done using execution 

time input parameters rather than control card file manipulation, and, 

(3) an ability to acquire a Table of Contents which gives pertinent 

descriptive information about all arrays currently on the data-complex. 

Consider now the most powerful as.pect of the data-complex. Suppose it is 

desired to perform option 3 in program POST using the DD array from file DDEE13 

and the EE array from file DDEEll. With the programs as written, the user has 

basically one option. Of course, program PRE could be altered, re-compiled and 

re-executed to generate the desired DD-EE array combination. But the best 

option would be to employ the following control cards to manipulate the data 

files, searching sequentially thr,ough the files to obtain the desired data. 

GET,DDEE13,DDEEll. 

COPYBR,DDEE13,TAPE2. (copy DD array - first record - onto TAPE2) 

SKIPR,DDEEll,l. (skip DD array on DDEEll) Control 
Deck 

COPYBR, DDEEll,TAPE2. (copy EE array - second record - onto TAPE2) 
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REWIND,TAPE2. 

GET,POSTBN. 

POSTBN. 

/EOR 

ABCl, SCALAR=l. FOR DD AND SCALAR =.07 FOR EE 

$POSTINP NM=~O ,IOPT=~$ 

1 

/EOF 

J 

Data 
Deck 

Note that with this type of data storage and transfer, the data files must 

be manipulated and the programs must be completely re-loaded and executed each 

time a new problem configuration is desired. With many arrays and files to keep 
track of in large program systems, this could verge on the undesirable, if not 

the impossible! 

Obtaining the same problem configuration for the programs in Example 2 

would simply require adding the following data cards into the data stream of 

JOB4. 

ABCl, SCALAR=1.7 FOR DD AND SCALAR=.07 FOR EE 

$POSTINP NM=~o,IOPT=~$ 

DD 3 0 

EE 1 0 

END 

As a matter of fact, any problem configuration using any combination of 

arrays created could be run during this same program execution without reloading 

the program or manipulatinq files in the control deck! At this point, for 

many large programs, all new possibilities can be achieved. All kinds of problem 

configurations can be set up and analyzed with extremely little effort on the 

user's part, even without having pre-determined the problem configuration. 

Another beautiful part of the data-complex system is that a Table of Contents 

can be obtained by the user. See page 39. This enables the user to see the 

descriptive parameters he has chosen to identify the data, which data-set a 

particular block of data is on, the size of each block of data, etc. 
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At some point-in this discussion, the question might have occurred to 

the reader of just how the arrays AA, BB, and CC were put onto the data-complex 

in the first place. There are two basic ways this could have been done. They 

could have been put on previous to executing program PREDC from another 

program in a similar manner to the way program PREDC stored the arrays DD and 

EE onto DCSAMPL. The second method, and the one employed in this case, was to 

store them from an external file using a DATA-COMPLEX MANAGER program. It is 

this method which will be discussed next. 

Data-Complex Manager 

The data-complex manager is a small independent program which simply allows 

the user to manage the data stored on a given data-complex. It can receive 

data in any format from an external file and store it on the data-complex. Also, 

it can write out, in any format desired, any data which is already stored on the 

data-complex so that it can be utilized by an external program or simply altered 

and re-stored. A data-complex manager (DC-manager) program is essentially both 

a pre- and post-processor for programs which use the data-complex. 

The question was raised as to how the AA, BB, and CC arrays were stored on 

the data-complex for Example 2. Example 3, part A is a listing of the code 

used to create a DC-manager program to run in conjunction with the programs 

PREDC and POSTDC in Example 2. Part B is a copy of the interactive job during 

which the AA, BB, and CC arrays were stored onto the data-complex DCSAMPL from 

the files ABC1 and ABC2. This DC-manager allows the user to input as data the 

file names of the data-complex and binary input file. (ABC1 and ABC2 are 

binary files.) Similar code could be put in if formatted files are needed. 

This program allows the user to input several types of operation codes: STORE, 

PRINT, WRITE, REWIND, TOC. Basically these commands are described as follows: 

STORE store data into a dataset on the data-complex. 

PRINT print out data stored on the data-complex to file OUTPUT. 

WRITE write out data stored on the data-complex to an alternative file 

in either formatted or binary form. 

REWIND FN rewind file FN, where FN is the name of either a formatted or binary 

input file or a formatted or binary output file. 
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TOC print out Table of Contents of entire data-complex. 

TOC n print out Table of Contents of just dataset n. 

Note in the following example that the same block data - DATACOM used in 

programs PREDC and POSTDC must also be used with program DCMAN. 

Example 3. -- Data-Complex Manager to be run in conjunction with programs PREDC 

and POSTDC from Example 2. 

Part 3A: Code for program DCMAN 

PROGRAM DCMAN(INPUT=1O1,OUTPUT=lOl) 

DCFILE=O 

BINP=O 

CALL OPENDC(DCFILE) 

CALL OPENBIN(BINP) 

CALL DCM 

END 

BLOCK DATA DATACOM 

COMMON/RINDX/INDS~TS,NDSETN,NDSETP,ICSET,DATCOM,INDEX(l2) 

COMMON/SUBINDX/NREC,NIND,NINDA,IOP,IMAN,INDEX2(l66) 

COMMON/RNAMEC/NAMEC(l5) 

COMMON/RNAMES/NAMES(2,15) 

COMMON/SETRD/ISETR(15) 

COMMON/SETSV/ISETSV(l5) 

COMMON/NWORDS/NWORDS(15) 

COMMON/NRECDS/NRECDS(15) 

REAL NAMEC,NAMES 

DATA NDSEPT/lO/,NREC/l5/,NIND/166/ 

DATA NAMEC/lOHAA 

C ,lOHBB 

C ,lOHCC 

C ,lOHDD 

C ,lOHEE 

C / 
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DATA NAMES/lOHSAMPLE AA ,lOH 

C ,lOHSAMPLE BB ,lOH 

c ,lOHSAMPLE CC ,lOH 

C ,lOHAA*AA+BB*C,lOHC*SCALAR 

C ,lOHAA*AA+DD)*,lOHAA*FREQ(I) 

C I 

END 

Part 3B: Interactive job session during which arrays AA, BB, and CC were 

stored onto the data-complex DCSAMPL from files ABC1 and ABCZ. 

/GET,DCMAN. 

/GET,ABCl. 

/DCMAN. 

TYPE IN DATA-COMPLEX FILE NAME 

? DCSAMPL 

TYPE IN BINARY INPUT FILE NAME 

? ABC1 

TYPE IN OPERATION CODE 

? STORE 

TYPE IN INPUT-OUTPUT PARAMETERS 

? AA -2 1 2500 1 

? BB -2 1 3750 1 

? cc -2 1 3750 1 

? END 

TYPE IN 

? AA ARRAY 

TYPE IN 

? BB ARRAY 

TYPE IN 

? CC ARRAY 

TYPE IN 

? TOC 

(Figure 12a 
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IDENTIFICATION FOR AA ARRAY 

FROM ABC1 ,---NM=50,NBC=75 

IDENTIFICATION FRO BB ARRAY 

FROM ABC1 ,---NM=50,NBC=75 

IDENTIFICATION FOR CC ARRAY 

FROM ABCl,---NM=50,NBG=75 

OPERATION CODE 

is the response to this command) 



TYPE IN OPERATION CODE 

? END 

.185 CP SECONDS EXECUTION TIME 

/GET ,ABCZ 

/DCMAN. 

TYPE IN DATA-COMPLEX FILE NAME 

? DCSAMPL 

TYPE IN BINARY INPUT FILE NAME 

? ABC2 

TYPE IN OPERATION CODE 

? STORE 

TYPE IN INPUT-OUTPUT PARAMETERS 

? AA -2 2 2025 1 

? BB -2 2 2700 1 

? CC -2 2 2700 1 

? END 

TYPE IN 

? AA ARRAY 

TYPE IN 

? BB ARRAY 

TYPE IN 

? CC ARRAY 

TYPE IN 

? TOC 

(Figure 

TYPE IN 

? END 

IDENTIFICATION FOR AA ARRAY 

FROM ABC2 ,---NM=45, NBC=60 

IDENTIFICATION FOR BB ARRAY 

FROM ABC2 ,---NM=45,NBC=60 

IDENTIFICATION FOR CC ARRAY 

FROM ABC2 ,---NM=45,NBC=60 

OPERATION CODE 

12b is the response to this command) 

OPERATION CODE 

.217 CP SECONDS EXECUTION TIME 

/SAVE,DCSAMPL. 

In the above example, the reader should note the response to "TYPE IN 

INPUT-OUTPUT PARAMETERS". Briefly, the response is (from left to right): 

(1) array codename established by user in block data - DATACOM. 

(2) input parameter to indicate how an array is to be read in 

-2 read in from an external binary-input file 
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-1 read in from an external formatted-input file 

n>O read in from dataset n of the data-complex. 

(3) output parameter to indicate to where and how the array is to be sent 

-2 write out to an external binary-output file 

-1 write out to a formatted-output file 

n>O store on dataset n of the data-complex. 

(4) number of words in one record or block of array (optional if array is 

already stored on data-complex). 

(5) number of records or blocks which comprise array (optional if array is 

already stored on data-complex). 

In the example above, it was pointed out that only a binary input file was 

needed in addition to the data-complex itself. However, it is possible to have 

a formatted input file, a binary output file, or a formatted output file as 

well. To open these files, calls to OPENFIN, OPENBOT, AND OPENFOT, respectively, 

can be inserted into to code of program DCMAN. If one simply wishes to print 

out a Table of Contents and data-arrays already on the complex, then no calls 

except to OPENDC and DCM need to be made. 

The OPEN-file routines were written in order to keep buffer space down and 

to allow variable input of file names. The buffer space for a file is incor- 

porated into core only if the file is opened by a call to an OPEN-file 

routine. Furthermore, names of all files opened by these routines can be input 

during execution by setting FN in a CALL OPEN-file(FN) to 0 (zero). For example, 

CALL OPENDC(FN) where FN=O allows the user to input a file name during execution, 

while CALL OPENDC(FN) where FN=5LTAPEl would mean the data-complex file name was 

fixed as TAPE1 unless the program itself was altered and re-compiled. 

The utility routines have been set up to allow a great deal of flexibility 

to the user while keeping the input to a minimum b.y using code names and numbers 

to indicate types of options. All the parameters are completely documented 

within each routine. A complete listing of all data-complex utility routines is 

available. 

Concluding Remarks 

An attempt has been made to document some programming techniques which 
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are, perhaps, not regularly used, with the goal of aiding other researchers 

in their development of programs. Five programming techniques used to decrease 

core and/or increase program versatility have been described. The techniques 

and their primary benefits are: 

(1) 

(2) 

(3) 

(4) 

(5) 

iDynamic storage allocation - Precise allocation by input of core 

requirements for individual jobs; no recoding required when problem 

dimensions change. 
'. 

Automatic core-sizing - Computation of core requirements performed 

by the orogram during job execution based upon input dimensions. This 

can be done several times during execution, (for example, when a 

new overlay is called), thereby more precisely controlling the core 

allocation to what is actually required. 

Matrix partitioning - A means of handling operations involving 

matrices which are too large to load into core, in sections or blocks 

and of enabling one to make a more efficient trade-off between I@ 

and core storage requirements. 

Free field alphanumeric and integer combination reads - Enables the 

user to read in alphanumeric variables and integer variables using a 

free field format. This is especially helpful for interactive terminal 

use where alphanumeric names are a convenient'form of input for'the 

user. 

Incorporation of a data-complex and data-complex manager - Relieves 

the user from much of the drudgery of data management and storage; 

facilitates tie-ing together of programs whose inputs and outputs are 

related. The application of these techniques to improve two aerodynamics 

programs has been documented and other listings and sample programs 

have been presented to further illustrate applications of these tech- 

niques. 
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APPENDIX A: MEMORY SYSTEM FUNCTION 
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FUNCTION MEMORY 

LANGUAGE: COMPASS. 

PURPOSE: 

USE: 

EXAMPLE: 

To allow changes in a job's field length during 

execution. 

IWORDS = MEMORY (IFL) 

where: 

IFL is the field length request para- 

meter. 

If IFL is greater than zero, the 

field length is set to IFL. 

If IFL equals zero, the field length 

is set to the last word address of 

program loaded (LWPR, RA + 65s). 

If IFL is less than zero, the field 

length ?s set to the last word 

address of program loaded (LWPR, 

RA + 65a) plus the absolute value 

of IFL. 

I WORDS is the new field length. 

Macro Used: MEMORY. 

The following program illustrates the use of the 

MEMORY subroutine. 

OVERLAY (OVL, 0, 0) 
PROGRAM SAMPLE (. . . 

C 

C ----REDUCE FIELD LENGTH TO MINIMUM REQUIRED. 

C 

IWORDS = MEMORY (0) 
PRINT 1001, IWORDS 

1001 FORMAT (*FIELD LENGTH NEEDED FOR (0,o) = 
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*, 06) 

C 

C ----INCREASE FIELD LENGTH TO 60K FOR LOADING 

C ----USE OF (1,O) OVERLAY. 

IWORDS = MEMORY (6000~) 
CALL OVERLAY (3LOVL, 1, 0) 

END 

OVERLAY (OVL,l,O) 

PROGRAM ONE0 

C 

C ----DECLARE ONE WORD OF BLANK COMMON FOR 

C ----EXPANSION LATER 

C 

COMMON BLNKCOM (1) 

C 

C ----REDUCE FIELD LENGTH TO MINIMUM REQUIRED 

C ----FOR EXECUTION OF COMBINED (0,O) AND 

C ----(1,0) OVERLAYS. 

IWORDS = MEMORY (0) 
PRINT 1002, IWORDS 

1002 FORMAT (*FIELD LENGTH NEEDED FOR (0,o) + 
(1,0) = *, 06) 

C 

C ----ADD 2000 WORDS TO BLANK COMMON AREA. 

C 
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RESTRICTIONS: 

IWORDS = MEMORY (-2000) 
PRINT 1003, IWORDS 

1003 FORMAT (*FIELD LENGTH WITH EXPANDED B.C. = 
*, 06) 

END 

1. The user cannot increase his field length 

beyond the maximum for which he is validated. 

2. Blank common cannot be expanded from a higher 

level overlay if the calling overlay has 

declared blank common. 

3. The field length increases and reductions 

take place from the upper end of the user's 

existing field length. 

METHOD: 

ACCURACY: 

Not applicable. 

All field length requests are rounded upward 

to the nearest 1008 words. 

REFERENCES: The macro used is described in the KRONOS 

Reference Manual, pages 7-130. 

STORAGE: 23a CM words. 

SUBPROGRAMS USED: SYS = . 

SOURCES: D. A. Hough, ISSI’, Langley Research Center. 

QUESTIONS ON THE USE OF THIS PROGRAM SHOULD BE DIRECTED TO THE ACD PROGRAMMER 

SUPPORT GROUP, EXT. 3548. 
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APPENDIX B: BLOCKED - EQUATIONS SOLVER 
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C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

SUBROUTINE SOLVE (N, NROW, A, X, WK, IER, NCOL) 

THIS ROUTINE SOLVES A SYSTEM OF LINEAR EQUATIONS WITH COMPLEX 

COEFFICIENTS, USING GAUSSIAN ELIMINATION. THE AUGMENTED MATRIX 

[A:B] CORRESPONDING ~0 THE SYSTEM A*X = B, 1s TRIANGULARIZED AND 

THEN THE SOLUTION IS OBTAINED BY BACK SUBSTITUTION. 

ARGUMENTS 

N 

NROW 

A 

X 

WK 

IER 

NCOL 

NUMBER OF COLUMNS IN A 

NUMBER OF ROWS IN A 

WORK AREA LARGE ENOUGH TO STORE ONE BLOCK OF ENTIRE 

A-COEFFICIENT MATRIX. THE COEFFICIENTS MUST BE STORED 

ON RANDOM ACCESS FILE PRIOR TO CALLING SUBROUTINE WITH 

RECORD LENGTHS OF 2*16*N, (A IS COMPLEX, HENCE THE 2) 

ON RECORDS 1 TO NREC. NREC IS THE.NUMBER OF RECORDS OR 

BLOCKS INTO WHICH A IS PARTITIONED. 

AN NROW * NCOL MATRIX WHICH, UPON ENTERING SUBROUTINE, CONTAI 

THE CONSTANT MATRIX B; ON RETURN, THE SOLUTION. 

A WORK AREA THE SIZE OF ONE BLOCK OF A 

OUTPUT ERROR PARAMETER 

0, SYSTEM OF EQUATIONS WAS SOLVED 

1, SYSTEM OF EQUATIONS WAS NOT SOLVED DUE TO NON- 

EXISTENCE OF PIVOT ELEMENT IN A BLOCK COLUMN. 

IER SHOULD BE TESTED UPON RETURN. 

NUMBER OF COLUMNS IN CONSTANT MATRIX, B. 

COMPLEX A (16, 'I), WK (16, 1), X (NROW, NCOL), TEMP, R 

COMMON /RTAPE/ ITAPE, INDXR (101) 

NSIZE = 16 

COMPUTE NUMBER OF BLOCKS (RECORDS) IN A 

NREC = NROW/(NSIZE +.Ol) + 1 

:NS 

54 



C 

C 

10 

5 

2 

C 

C 

COMPUTE NUMBER OF ROWS IN LAST BLOCK 

IREM = MOD(NROW,NSIZE) 

IF(IREM.EQ.D)IREM=NSIZE 

BEGIN TRIANGULAkIZATION 

DO 999 IREC = 1, NREC 

READ IN CURRENT BLOCK 

CALL READMS(ITAPE, A, 2*N,IREC) 

ILAST = NSIZE 

IF (IREC.EQ.NREC) ILAST=IREM 

DO 100 IR = 1 ,ILAST 

SEARCH FOR NON-ZERO PIVOT ELEMENT, INTERCHANGING ROWS IF NECESSARY 

IROW = IR 

J = (IREC-l)*NSIZE + IR 

IXROW = J 

AB = CABS(A(IR,J)) 

IRl = IR+l 

IF(AB.NE.O.O)GO TO 3 

DO 5 JJ = IRl ,ILAST 

AB = CABS(A(JJ ,J)) 

IF(AB.EQ.O.O)GO TO 10 

IROW = JJ 

IXROW = JJ + ( IREC-l)*NSIZE 

GO TO 2 

IF(JJ .EQ. 1LAST)GO TO 1000 

CONTINUE 

CONTINUE 

DIVIDE THROUGH BY PIVOT 

R = A (IROW,J) 

DO 25 JJ = J,N 
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TEMP = A(IR,JJ) 

A(IR,JJ) = A(IROW,JJ)/R 

25 A(IROW,JJ) = TEMP 
P 

C PERFORM CORRESPONDING OPERATIONS ON CONSTANT MATRIX 

-DO 20 K=l, NCOL 

TEMP = X(IXROW,K) 

X(IXROW,K) = X(J,K) 

X(J,K) = TEMP/R 

20 CONTINUE 

GO TO 4 

3 CONTINUE 

R = A(IROW,J) 

DO 7 JJ=J,N 

A(IR,JJ)=A(IR,JJ)/R 

7 CONTINUE 

DO 8 K=l,NCOL 

X(J,K)=X(J ,K)/R 

DO 8 K=l,NCOL 

8 CONTINUE 

4 CONTINUE 

L 

C INTRODUCE ZEROES IN CURRENT BLOCK 

IF(IRl.GT.ILAST)GO TO 111 

DO 110 JJ=IRl,ILAST 

TEMP=-A(JJ,J) 

DO 6 K=J,N 

A(JJ,K)=TEMP*A(IR,K) + A(JJ,K) 

IXROW = JJ + (IREc-l)*NSIZE 

DO 30 K=l,NCOL 

X(IXROW,K)=TEMP*X(J,K)*+ X(IXROW,K) 

30 CONTINUE 

110 CONTINUE 
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111 CONTINUE 

100 CONTINUE 

C 

C WRITE OUT CURRENT TRIANGULARIZED BLOCK 

CALL WRITMS(ITAPE,A,2*NSIZE*N,IREC,-1,O) 

IRECl=IREC+l 

C 

c TRIANGULARIZE SUCCESSIVE BLOCKS OF A 

IF(IRECl.GT.NREC)GO TO 999 

DO 40 JREC=IRECl,NREC 

C 

C READ IN NEXT BLOCK 

CALL READMS(ITAPE,WK,2*NSIZE*N,JREC) 

ILAST = NSIZE 

IF(JREC.EQ.NREC)ILAST=IREM 

DO 200 IR=l,NSIZE 

J=(IREC-l)*NSIZE+IR 

DO 210 JJ=l,ILAST 

TEMP=-WK(JJ,J) 

DO 206 K=J,N 

206 WK(JJ,K)=TEMP*A(IR,K)+WK(JJ,K) 

IXROW=(JREC-l)*NSIZEtJJ 

DO 230 K=l,NCOL 

X(IXROW,K)=TEMP*K(J,K)+X(IXROW,K) 

230 CONTINUE 

210 CONTINUE , 

200 CONTINUE 

C 

C WRITE OUT TRIANGULARIZED BLOCK 

CALL WRITMS(ITAPE,WK,2*NSIZE*N ,JREC, -1,O) 

40 CONTINUE 

999 CONTINUE h 

C 
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C END TRIANGULARIZATION 

C BEGIN BACKidORDS SUBSTITUTION 

J=J+l 

DO 310 IREC=l ,NREC 

IREB=NREC-IREC+l 

IF(IREB.LT.NREC)CALL READMS(ITAPE,A,2*NSIZE*N,IREB) 

ILAST=NSIZE 

IF(IREB.EQ.NREC)ILAST=IREM 

DO 310 IR=l ,ILAST 

IRB=ILAST-IR+l 

J=J-1 

Jl =J+l 

DO 335 K=l ,NCOL 

TEMP=(O.,O.) 

IF(J.EQ.N)GO TO 330 

DO 320 JJ=Jl ,N 

320 TEMP=TEMP+A(IRB,JJ)*X(JJ,K) 

330 X(J,K)=X(J,K)-TEMP 

335 CONTINUE 

310 CONTINUE 

RETURN 

1000 PRINT 500 

IER=l 

500 FORMAT(* MATRIX IS NOT INVERTIBLE*) 

RETURN 

END 
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APPENDIX C: FREE FIELD ALPHANUMERIC READ ROUTINES 
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* 

*** 

*** 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

SUBROUTINE CONVERT(IWORD,ITYPE) 

THIS SUBROUTINE CONVERTS A CARD IMAGE STORED IN ARRAY CARD 

TO ALPHANUMERIC OR INTEGER WORDS IN A FREE FIELD MANNER. 

WRITTEN BY S.H.TIFFANY 76/10/20 

ARGUMENTS 

IWORD THE ADDRESS OF WHERE THE CONVERTED WORD IS TO BE STORED 

ITYPE THE TYPE OF CONVERSION REQUESTED 

=0 ALPHANUMERIC CONVERSION BLANK FILL 

=l INTEGER CONVERSION 

=2 ALPHANUMERIC CONVERSION ZERO FILL 

USAGE: 

COMMON/CARD/ISTART,CARD(80) 

READ(INPUT,lO)CARD 
* 10 FORMAT(80Al) 

ISTART=l * 
*cc 
* 
*cc 
* 
*cc 
* 
* 
* 
* 
* 

CONVERT THE FIRST NON-BLANK COLUMNS TO AN ALPHANUMERIC WORD 

CALL CONVERT(WORD,O) 

CONVERT THE NEXT SET OF NON-BLANK COLUMNS TO AN INTEGER 

CALL CONVERT(IWORD,l) 

TEST ISTART TO DETERMINE IF END-OF-CARD HAS BEEN REACHED 

IF(ISTART.GT.80)GD TO 20 

ETC. 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

COMMDN/CARD/ISTART,CARD(80) 

REAL MINUS 
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INTEGER WD 

DATA BLANK,COMMA/lH .,lH,/ 

DATA MINUS/lH-/ 

IM=l 

WD=lOH 

DO 10 IS=ISTART,80 

CD=CARD(IS) 

IF(CD.EQ.BLANK.OR.CD.EQ.COMMA)GO TO 50 

10 CONTINUE 

IS=81 

50 CONTINUE 

ISl=IS-1 

ISTOP=IS 

60 CONTINUE 

ISTOP=ISTOP+l 

IF(ISTOP.EQ.81) GO TO 70 

CD=CARD(ISTOP) 

IF(CD.EQ.BLANK.OR.CD.EQ.COMMA)GO TO 60 

70 CONTINUE 

IS2=ISTART+l 

IF(ITYPE.EQ.l)GO TO 100 

FORM=lOH(Al) 

ENCODE(lO,FORM,WD)CARD(ISTART) 

IF(IS2.GT.ISl)GO TO 99 

DO 20 I=IS2,ISl 

Il=I-ISTART 

ENCODE(10,30,FORM)Il 

30 FORMAT(2H(A,I1,4H,Al)) 

ENCODE(lO,FORM,IWORD)WD,CARD(I) 

WD=IWORD 

20 CONTINUE 

IF(ITYPE.EQ.2)IWORD=IWORD.AND.MASK((IS1-ISTART+l)*6) 

GO TO 99 
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100 

110 

120 

98 

99 

*** 

* 

* 

* 

* 

* 

* 

* 

* 

* 

CONTINUE 

CD=CARD(ISTART) 

IF(CD.NE.MINUS)GO TO 110 

ISTART=ISTART+l 

IS2=ISTART+l 

IM=-1 

GO TO 100 

CONTINUE 

WD=C 

CALL SHIFT(CD,WD) 

IF(IS2.GT.ISl)GO TO 98 

DO 120 I=IS2,ISl 

CD=CARD(I) 

CALL SHIFT(CD,WD) 

CONTINUE 

CONTINUE 

IWORD=WD*IM 

CONTINUE 

ISTART=ISTOP 

RETURN 

END 

IDENT SHIFT 

SHIFT THIS ROUTINE PERFORMS INTEGER CONVERSION OF ONE COLUMN 

IMAGE FOR SUBROUTINE CONVERT 

S.H.TIFFANY 76/10/20 

*CALL SHIFT(CD,WD) 

ARGUMENTS: 

CD ONE WORD CONTAINING ONE COLUMN IMAGE IN LEFT MOST 

BITS 

WD ONE WORD CONTAINING PARTIALLY CONVERTED INTEGER WORD 

UPON RETURN WD=lO*WD+(CD) 
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ENTRY SHIFT 

TRACE VFD 42/OLSHIFT,18/SHIFT 

SHIFT DATA 0 

SX6 A0 

SA6 AOSAVE 

SAO Al 

SAl Xl 

SA2 AO+l 

SA2 X2 

BX6 Xl 

AX6 54 

sx5 33B 

IX6 X6-X5 

MX3 54 

BX3 -x3 

BX6 X3*X6 

sx3 12B 

IX3 X3*X2 

IX6 X3+X6 

SA6 A2 

SAl AOSAVE 

SAO Xl 

EQ SHIFT 

AOSAVE DATA 0 

END 
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LOAD hAP - SAMPLE 

FWA OF THE LOAD 311 

LWA +l OF THE LOAD 35725 

TRANSFER ADDRESS -- SAMPLE 4223 

0 
CENTRAL PROCESSOR COMMUN,ICATION I 

I II 

BUFFERS 

PROGRAM CODE 

10000 - 
A MATRIX 

(reserved) 

B MATRIX 
(reserved) 

20000 

1 

C MATRIX 
(reserved) 

30000 - 

SYSTEM ROUTINES 

36000 : 

Figure 1. - Core image diagram of Example 1, sample 

program without dynamic storage allocation. 

65 



LOAD MAP - SAMPLE 

FWA OF THE LOAD 111 

LWA +1 OF THE LOAD 17273 

TRANSFER ADDRESS -- SAMPLE 4223 

0 
CENTRAL PROCESSOR COMMUNICATION 

111 - 
BUFFERS 

PROGRAM CODE 

1OOOD - 

SYSTEM ROUTINES 

17000 
DYNAMICALLY . A MATRIX B MATRIX C MATRIX 

STORED b .-breathing space 
ARRAYS 

Figure 2. - Core-image diagram of Example 2, sample 

program with dynamic storage allocation. 
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INPUT DATA 

:. 27. 34. ;: 22: 2 1: 5: 
:: 22: 33: 44: 55: 5. :: :- 44: 
10. 26. 

33. 
30. ii 

55: 
10. 20. 30. 40: 

50. 60. 70. 
50. 

10. 20. 
60. 70. 

30. 40. 50. 60. 
10. 

70. 
20. 30. 40. 50. 60. 70. 

OUTPUT FROM EXAMPLE 1 - SAMPLE PROGRAM WITHOUT DYNAMIC STORAGE 
FIELD LENGTH FIXED AT APPROXIMATELY 36000B 

1.00 1.00 1.00 1.00 1.00 
2.00 2.00 

1.00 1.00 
2.00 2.00 2.00 

3.00 
2.00 

3.00 3.00 
2.00 

3.00 3.00 
4.00 

3.00 
4.00 

3.00 
4.00 4.00 4.00 

5.00 5.00 
4.00 4.00 

5.00 5.00 5.00 
10.0 

5.00 
10.0 

5.00 
10.0 1O.l.l 

20.0 20.0 20.0 20.0 
30.0 30.0 30.0 30.0 
40.0 40.0 40.0 40.0 
50.0 50.0 50.0 50.0 
60.0 60.0 60.0 60.0 
70.0 70.0 70.0 70.0 
280. 280. 280. 280. 
560. 560. 560. 560. 
840. 840. 840. 840. 
.112E+04 .112E+04 .112E+O4 .112E+04 
.140E+04 .140E+04 .140E+04 .140E+04 

.052 CP SECONDS EXECUTION TIME, 

OUTPUT FROM EXAMPLE 2 - SAMPLE PROGRAM WITH DYNAMIC.STORAGE USING 
/ /-COMMON 

FIELD LENGTH NEEDED FOR THIS RUN IS 017517B 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 
2.00 2.00 2.00 2.00 2.00 2.00 2.00 
3.00 3.00 3.00 3.00 3.00 3.00 3.00 
4.00 4.00 4.00 4.00 4.00 4.00 4.00 
5.00 5.00 5.00 5.00 5.00 5.00 5.00 
10.0 10.0 10.0 10.0 
20.0 20.0 20.0 20.0 
30.0 30.0 30.0 30.0 
40.0 40.0 40.0 40.0 
50.0 50.0 50.0 50.0 
60.0 60.0 60.0 60.0 
70.0 70.0 70.0 70.0 
280. 280. 280. 280. 
560. 560. 560. 560. 
840. 840. 840. 840. 
.112E+04 .112E+04 .112E+04 .112E+O4 
.140E+04 .140E+04 .14OE+O4 .140E+04 

.053 CP SECONDS EXECUTION TIME 

Figure 3. - Input and output for sample runs of Examples 1 and 2. 
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, PROGRAM 

AND 

SYSTEM 

CODE 
c 

I- A -- NR*NC 

I B -- NC*NM 

I ~~ C -- NR*NM 
rbreathing space 

Figure 4. - Core-image diagram of Example 3, 

sample program using dynamic 

storage allocation without blank 

common. 
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500008 

OVERLAY(SAMPLE,O,O) 

PROGRAM MAIN 

SYSTEM ROUTINES 

OVERLAY(SAMPLE,l,O) OVERLAY(SAMPLE,P,O) 

PROGRAM ONE PROGRAM TWO 

DYNAMIC CORE 

DYNAMIC CORE 

-65000B 

Figure 5. - Core image diagram of an overlayed program with dynamic 

storage allocation and automatic core-sizing. 
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4 

(OJN 
Program 
OSUSSA 

(1 m (4 30) (5so 

INITIAL MATRIX DNWASH SOL GFORC 
I 

A 
FREQ. LOOP 

Figure 6. - Flow diagram of the modified program SUSSA. 
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OK - 

10K 

20K - 

30K 

40K - 

50K 

60K - 

70K 

1OOK - 

1lOK 

12DK - 

130K 

140K -. 

150K 

160K - 

BUFFERS 

SUSSA PROGRAM CODE 

ARRAYS 

SUBROUTINES: 
SOLUTN 

DATA DNWASH CCGELG 
COODPT MODSHP COEFF 
CHECK SYMSURF AVERAG 
PREPRO CUBSPL PHI 
GEOMET PRINTA VELXYZ 
VEC123 PRINTB CPLINR 

SYSTEM ROUTINES 

MAXIMUM NO. OF ELEMENTS 100 
MAXIMUM NO. OF MODES 9 
MAXIMUM NO. OF SPANWISE BOXES 10 

Figure 7. - Load diagram of original SUSSA. 
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. ,. ,, . . ,........__-_ --.-- 

30K - 

40K - 

50K - 

60K - 

70K - 

1OOK - 

10K - 
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Figure 8. - Load diagram of modified SUSSA. 
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Figure 9. - Load diagram of streamlined ICOPS version of 

Doublet Lattice program on NOS system. Field 

length fixed at load time for entire program. 
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Figure 10. - Load diagram of modified NOS version of Doublet Lattice Program. 
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Figure 11. - Diagram of Data-Complex program system. 
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TABLE OF CONTENTS FOR DATA-COMPLEX FILE OCSAMPL 

DATASET 1 

REC. ARRAY CODE DATE TIME NO. NO. 
NO. NAME NAME CREATED CREATED WORDS RECORDS DESCRIPTION 
------______---__---____________________------------------------------------------------------------------- 

1 SAMPLE AA AA 77/09/19. 14.48.38. 2500 1 AA ARRAY FROM ABCl, ---NM-50,NBC-75 

2 SAMPLE BB BE 77/09/19. 14.49.01. 3750 1 BB ARRAY FROM ABCl, ---NM-50,NBC=75 

3 SAMPLE CC cc 77109119. 14.49.25. 3750 1 CC ARRAY FROM ABCl, ---NM-50,NBC=75 

Figure 12a. - Table of Contents for data-ComDlex DCSAMPL Drier 
to Dataset 2 input. 

TABLE OF CONTENTS FOR DATA-COMPLEX FILE DCSAMPL 

DATASET 1 

REC. ARRAY CODE DATE TIME NO. NO. 
NO. NAME NAME CREATED CREATED WORDS RECORDS DESCRIPTION 
_________________-______________________------------------------------------------------------------------- 

1 SAMPLE AA AA 77/09/19. 14.48.38. 2500 1 AA ARRAY FROM ABCl, ---NM-50,NBC-75 

2 SAMPLE BB BE 77/09/19. 14.49.01. 3750 1 BB ARRAY FROM ABCl, ---NM-50,NBC=75 

3 SAMPLE CC cc 77/@9/19. 14.49.25. 3750 1 CC ARRAY FROM ABCl, ---NM-50,NBC=75 

DATASET 2 

REC. ARRAY CODE DATE TIME NO. NO. 
NO. NAME NAME CREATED CREATED WORDS RECORDS 

DESCRIPTION 

__--___--___-_______.-------------------------------------------------------------------------------------- 
1 SAMPLE AA AA 77/09/19. 14.52.10. 2025 1 AA ARRAY FROM ABCZ, ---NM-45,NBC=60 

2 SAMPLE BB BB 77/09/19. 14.52.48. 2700 1 BE ARRAY FROM ABCZ, ---NM-45,NBC=60 

3 SAMPLE CC cc 77/09/19. 14.53.07. 2700 1 CC ARRAY FROM ABCZ, ---NM-45,NBC=60 

Figure 12b. - Table of Contents'for Data-Complex DCSAMPL after 
Dataset 2 input. 
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